ADR112

ANALOG/DIGITAL/RS232 INTERFACE

USER MANUAL

V 3.0

<u>Caution</u>: The **ADR112** is a static sensitive device. Observe proper procedures for handling static sensitive devices.

ONTRAK CONTROL SYSTEMS INC.

Ontrak Control Systems Inc. reserves the right to change product specifications to improve the product.
Although every attempt has been made to insure accuracy of information contained in this manual, Ontrak Control Systems Inc. assumes no liability for inadvertent errors.
Warranty: This ADR112 is warranted from defects in workmanship and materials for a period of 90 days. Liability for defects is limited to the purchase price of the product. This warranty shall not
apply to defects resulting from improper modifications or use outside published specifications.
Hyperterminal and Windows are trademarks of Microsoft Corporation.
APPLE, MACINTOSH and MAC are trademarks of Apple Computer Inc. PC, XT, AT, PS/2 are trademarks of International Business Machines Inc. COPYRIGHT 1999 ONTRAK CONTROL SYSTEMS INC.

TABLE OF CONTENTS

READ ME FIRST	3
 Communication options. a) The ADR112 RS232 Interface. 	4
2. Powering the ADR1123. ADR112 Commandsa) Analog Input Commandsb) Digital Port Commands	5 7 7 7
4. Using BASIC with ADR Products5. Using TURBO C with ADR Products7. Interfacing to the ADR112 (basic examples)	9 10
 a) Reading Potentiometer Position b) Connecting Switches to Digital Ports c) Connecting LED'S to Digital Ports d) Driving Solid-State Relays e) Temperature Measurement f) 4 - 20 mA Current Loop Options 	13 13 14 15 16
APPENDIX	
A-CONNECTION DIAGRAM B-ELECTRICAL SPECIFICATIONS C-MOUNTING DIMENSIONS	17 18 19

READ ME FIRST

Thank you for purchasing this ADR112, serial data acquisition and control interface. There are three steps to using the ADR112.

- 1. Connecting a computer or terminal to the ADR112.
- 2. Providing power to the ADR112.
- 3. Sending commands to the ADR112.

This manual will provide guidance for completing these steps along with BASIC and TURBO C programming tips. An applications section is also provided to describe how to interface various electronic transducers and other devices to the ADR112. Additional applications and programming examples are available on our web page at http://www.ontrak.net/

FEATURES

- -2, 12-bit analog inputs (0 -5 VDC)
- -8 digital I/O lines individually programmable as input or output
- -High current digital I/O lines (sink 20mA/source 20mA)
- -Three wire RS232 interface
- -Low power requirements (5 volts at 15mA)
- -Power-up via standard wall adapter (optional)
- -Simple yet versatile commands
- -Easy to use with Visual BASIC or TURBO C programs
- -Compatible with all ADR series interfaces

1a)THE ADR112 RS232 INTERFACE

The ADR112 communicates via a standard RS232 port utilizing a simple three-wire interface. The only signals used are received data (RC), transmitted data (TX) and ground (GND). Most RS232 ports use hardware handshaking (i.e. DTR, DSR, CTS, RTS) signals to control the flow of data on the port. For this reason the cable required to connect to the ADR112 must have jumpers on the DB25 end to satisfy these handshaking requirements. IBM or compatible computers may be used as a host computer with the supplied cable. The supplied cable has the following connections;

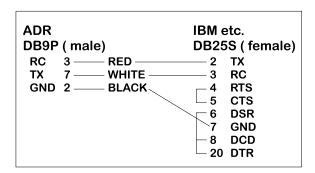


Figure 1: Supplied Cable Wiring Diagram

If the host computer has a 9-pin serial port connector, a 9-pin to 25-pin adapter cable will be required to connect to the ADR112 cable. This adaptor is available at most computer dealers. If desired, the DB25 connector on the supplied cable may be removed and a female DB9S connector can be soldered in its place using the following wiring diagram;

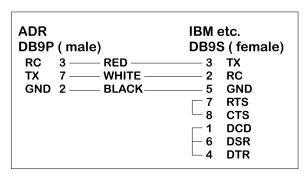
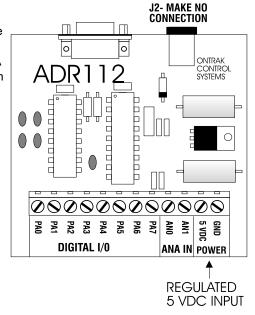


Figure 2: Modified Wiring Diagram For 9-PIN SERIAL PORTS

If the host computer has a female DB25 connector, a male-to-male adapter is required to use the supplied cable. This may be purchased at most computer dealers. Apple Macintosh computers may be connected to the ADR112 using MAC to DB25 DTE conversion cable.

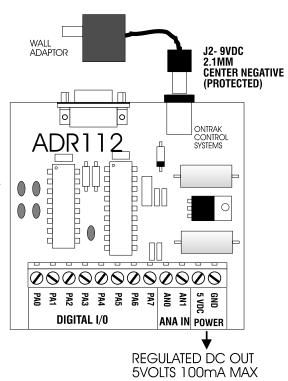
Once connected to the RS232 based host computer or terminal, the RS232 port should be configured to the following specifications to allow communication with the ADR112.

9600 baud - 8 bit words - 1 stop bit - no parity


If using BASIC or C consult the appropriate section in this manual for details on how to configure your serial port. If a terminal or terminal emulation program is used, configure your terminal to the above specifications using the operations manual for your terminal equipment or terminal emulation program.

2.PROVIDING POWER TO THE ADR112

The ADR112 may be powered using a regulated 5 volt power supply or a suitable wall adaptor.


POWER-UP USING A 5 VOLT REGULATED SUPPLY

If the ADR112 is to be powered using a regulated 5 volt power supply, the 5VDC and GND connections are to be made to the ADR112 via the main terminal block TB1. The supply must be able to provide a minimum of 30 mA and up to 130mA if the ADR112 is to source current from the digital outputs. Care must be taken to avoid improper power supply connection as permanent damage to the ADR112 may result if connected improperly. No connection to J2 is to be made if the ADR112 is powered by a regulated 5 volt supply. For safe operation the total current sourced by digital I/O should not exceed 100mA.

POWER-UP USING A WALL ADAPTOR

The ADR112 has an on-board 5 volt regulator allowing the use of a 9-volt wall adaptor to power the internal circuits. The regulator should be able to provide from 200-500mA .(MODE 68-950-1) The regulator must have a standard 2.1mm, center negative, coaxial connector. The connector can then be inserted into J2 on the ADR112. When the ADR112 is powered by a wall adaptor, the on-board regulator also may provide a regulated 5 volts DC out to provide power to external circuits. This 5 volt supply is available on TB1. The amount of current available depends on the amount of current sourced by the digital ports. For safe operation the total current sourced by digital I/O and the power terminals should not exceed 100mA.

ANALOG INPUT COMMAND SUMMARY

RDn Returns status of analog input in decimal format (0 - 5VDC Ref.) (n=0 or 1)

DIGITAL COMMAND SUMMARY

CPAxxxxxxx Configures PORT A. (x=1 for input, x=0 for output)

SPAxxxxxxxx Output binary data to PORT A. (x=1 or 0)

RPA Returns status of all I/O lines in PORT A in binary format.

RPAn Returns status of I/O line specified by n. (n= 0 to 7)

MAddd Outputs decimal data (ddd) to PORT A. (ddd= 0 to 255)

PA Returns status of PORT A in decimal format.

RESPAn Resets I/O line specified by n in PORT A. (n=0 to 7) SETPAn Sets I/O line specified by n in PORT A. (n=0 to 7)

3. ADR112 COMMANDS

a) ANALOG INPUT COMMANDS

There are 2 analog inputs, with a resolution of 12-bits, on the ADR112 labeled AN0 to AN1. The analog input range is 0 to 5 VDC. The command used to read analog inputs allow data to be retrieved in decimal format. The command returns four integer characters ranging from 0000 to 4095 depending on voltage on port input.

RDn Returns status of analog port specified by n in decimal (0000 to 4095)format. (n =0 or 1)

(Input voltage range used for conversion is 0 to 5VDC)

example; RD1<CR>

2156

(To convert to voltage; voltage = (reading/4095) X 5)

(Input AN1 is $(2156/4095) \times 5 = 2.632V$)

c) **DIGITAL PORT COMMANDS**

There is one, eight bit digital port on the ADR112 labeled PORT A. The individual I/O lines are labeled PA0-PA7. The following commands allow the user to;

-configure individual bits as input or output

-SET or RESET individual bits

-read individual bits

-read entire port in binary or decimal format

-write to entire port in binary or decimal format.

The digital port commands are;

CPAXXXXXXX Configures each bit of PORT A . All eight bits must be specified. Order

is MSB-LSB (x=1 for input, x=0 for output)

example; CPA11110000<CR>

(PA7, PA6, PA5, PA4 are configured as inputs and PA3, PA2, PA1, PA0 are

configured as outputs)

SPAXXXXXXX Outputs binary data to PORT A. All eight bits must be specified.

Order is MSB-LSB. Individual bits configured as input are not

effected by this command. (x=1 or 0)

example; SPA10101000<CR>

(PA7, PA5, PA3 are set, PA6, PA4, PA2, PA1, PA0 are reset)

RPA Returns status of all I/O lines in PORT A in binary format. Order is MSB-LSB.

Individual lines configured as output will return last data set on the port.

example; RPA<CR>

01110010

(PA7, PA3, PA2, PA0 are low, PA6, PA5, PA4, PA1 are high)

RPAn Returns status of I/O line in PORT A specified by n.(n=0 to 7)

example; RPA4<CR>

1

(PA4 is high)

MAddd Outputs decimal data (ddd) to PORT A. Individual lines configured as

input are not effected by this command. (ddd= 000 to 255)

example; MA255<CR>

(All lines of PORT A are set)

PA Returns status of PORT A in decimal format. Individual lines configured as

output will return last data set on PORT A.

example; PA<CR>

128

(PA7 is high, PA6 thru PA0 are low)

RESPAn Resets I/O line specified by n in PORT A. This command has no effect on I/O

lines configured as input. (n=0 to 7)

example; RESPA4<CR>

(PA4 is reset)

SETPAn Sets I/O line specified by n in PORT A. This command has no effect on I/O

lines configured as input. (n=0 to 7)

example; SETPA3<CR>

(PA3 is set)

4.SENDING COMMANDS IN BASIC TO THE ADR112

OPENING A SERIAL FILE

Commands may be sent to the ADR112 using a terminal emulation program such as Hyperterminal by simply entering commands and pressing <cr>
 With BASIC, the ADR112 is connected to the computer via a serial cable and BASIC treats the ADR112 as a serial file. Before commands can be sent to the ADR112 this serial file must be opened and initialized. This should be done at the start of any program that is to access the ADR112. The command to open a serial file is shown below;

10 OPEN "COM1:9600,n,8,1,CS,DS,RS" AS#1

This line opens a serial file and labels it as serial file #1. This allows access to the ADR112 using PRINT#1 and INPUT#1 commands.

SENDING COMMANDS

Sending commands in BASIC to the ADR112 can be done using PRINT#1 commands. For example, sending an RD0 command could be done as shown below;

20 PRINT#1, "RD0"

Extra spaces inside the quotes are ignored by the ADR112. Avoid sending commands on consecutive lines because a <CR> is not sent after the first command resulting in an unrecognized command. This problem arises with the configuring of a digital port and then trying to access the port immediately after it is configured. A REM statement should be inserted between consecutive PRINT#1 commands as shown below;

```
20 PRINT#1, "CPA00000000"
30 REM FORCES <CR>
40 PRINT#1, "SETPA0"
```

Variable names may also be used with PRINT#1 commands. One example of this is shown below. This program configures PORT A as output and then increments it from 0 to 255.

```
10 OPEN "COM1:9600,n,8,1,CS,DS,RS" AS#1
20 PRINT#1, "CPA0000000"
30 FOR X = 0 to 255
40 PRINT#1, "MA",X
50 NEXT X
60 END
```

RECEIVING DATA

When reading analog inputs or the digital port, data is sent from the ADR112 to the host computers serial buffer. This data can be retrieved using INPUT#1 commands. The INPUT#1 command should be used following PRINT#1 commands if data is expected to be sent by the ADR112. If a single piece of data is expected then one variable name should be used with the INPUT#1 command. If eight pieces of data are to be received as with the RPA command then eight variable names must be used with the INPUT#1 command. Examples of both cases are shown below:

```
20 PRINT#1, "RD0"
30 INPUT#1, ANADAT
40 PRINT#1, "RPA"
50 INPUT#1, PA7,PA6,PA5,PA4,PA3,PA2,PA1,PA0
```

The variable names used in the INPUT#1 commands now contain the data sent by the ADR112 The data can now be scaled, printed, displayed, saved or whatever is required by the application.

A BASIC PROGRAM EXAMPLE

A complete BASIC program which reads analog port 0 and sets PA0 if the analog port is above decimal value 2048 (2.5 volts) is shown below;

10 OPEN "COM1:9600,n,8,1,CS,DS,RS" AS#1 opens and configures serial file 20 PRINT#1, "CPA11111110" ;configures PA0 as output 30 REM FORCES < CR> 40 PRINT#1. "RESPA0" :resets PA0 50 REM FORCES <CR> 50 PRINT#1, "RD0" :sends RA0 command 60 INPUT#1. AN0 receives data into variable AN0 ;sends SETPA0 command if 70 IF AN0>2048 THEN PRINT#1, "SETPA0": GOTO 50 AN0>2048 and returns to line 50 80 PRINT#1, "RESPA0": GOTO 50 resets PA0 and returns to 50

Visit our web page at www.ontrak.net for additional programming examples in BASIC, Visual Basic and C.

5) SENDING COMMANDS IN TURBO C TO THE ADR112

This section will demonstrate how to send and receive data from the ADR112 using TURBO C. It outlines the commands used to, configure the serial port (bioscom), send data out through the serial port (fprintf), and receive data through the serial port (fscanf).

Commands used in TURBO C to access the ADR112 require the following include files to be declared at the start of TURBO C programs;

#include <stdio.h>
#include <bios.h>

CONFIGURING THE SERIAL PORT

The first step in accessing the ADR112 via the serial port is configuring the serial port to the proper communication parameters which are, 9600 baud, 8 bit words, no parity. This is done using the "bioscom" command. The syntax for this command is;

bioscom (0,settings,com1);

where settings is previously defined as HEX E3 and com1 is defined as 0. Defining "settings" and "com1" should be done using;

```
#define com1 0
#define settings (0xE3)
```

These statements should be placed immediately following your include files (see programming examples). The bioscom command needs only to be executed once before the ADR112 is accessed.

SENDING COMMANDS TO THE ADR112

To send commands to the ADR112 the "fprintf" command is used. For example, the following command sends an RD0 (read analog port 0) command to the ADR112;

```
fprintf (stdaux,"RD0 \xD");
```

The \xD suffix sends a carriage return after the command which is needed by the ADR112 to recognize a command. Integer variables may also be used in the command line. For example, the following command sends a MAddd (make port A=ddd) command, where DOUT is a previously defined integer value of 0 to 255.

```
fprintf (stdaux,"MA %d \xD",DOUT);
```

RECEIVING DATA FROM THE ADR112

If a command sent to the ADR112 is a responsive command, that is, one that results in data being sent back to the host, the data is retrieved using the "fscanf" command. After this command is used the serial buffer must be re-initialized using the "rewind" command. The syntax for this command is;

```
rewind (stdaux);
```

This command is executed after data is retrieved using the "fscanf" command. For example, the following commands send an RD0 command and stores the retrieved data in an integer variable named AN0;

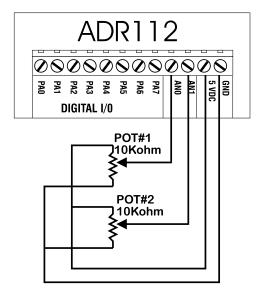
```
fprintf (stdaux,"RD0 \xD");
fscanf (stdaux,"%D",&an0);
rewind (stdaux);
```

In this example, the command PA (read port A) is sent to the ADR112 and the retrieved data is stored in an integer variable named PORTA;

```
fprintf (stdaux,"PA \xD");
fscanf (stdaux,"%D",&PORTA);
rewind (stdaux);
```

The following test programs outline the proper syntax for using the commands in simple applications. The first program retrieves the status of analog port 0 and displays the data on the video screen. The second program configures PORT A as output, sets the port to decimal 255, reads back the port status and displays the data on the video screen.

/* PROGRAM EXAMPLE ONE - ANALOG PORT TEST PROGRAM */


```
#include <stdio.h>
#include <bios.h>
#define com1 0
#define settings (0xE3)
main()
       /* declare an0 as an integer number */
int an0;
       /* configure com1 9600 baud, 8 bit words, no parity */
bioscom (0,settings,com1);
       /* send RD0 command to ADR112 on com1 */
fprintf(stdaux,"RD0 \xD");
       /* read data from com1 and store it at address of an0 */
fscanf (stdaux, "%d", &an0);
       /* initialize com1 buffer */
rewind (stdaux);
       /* print data on screen */
printf ("ANALOG PORT 0= %d \n",an0);
/* PROGRAM EXAMPLE TWO - DIGITAL PORT TEST PROGRAM */
#include <stdio.h>
#include <bios.h>
#define com1 0
#define settings (0xE3)
main()
       /* declare PORTA and DOUT as integer numbers */
int PORTA, DOUT;
       /* set DOUT to integer 255 */
DOUT=255;
       /* configure com1 9600 baud, 8 bit words, no parity */
bioscom (0,settings,com1);
       /* send CPA0000000 command to ADR112 on com1 */
fprintf (stdaux,"CPA00000000 \xD");
       /* send MAddd (ddd=DOUT) command to ADR112 on com1 */
fprintf (stdaux,"MA %d \xD",DOUT );
       /* send PA command to ADR112 on com1 */
fprintf (stdaux,"PA \xD");
       /* read data from com1 and store at address of PORTA */
fscanf (stdaux,"%d",&PORTA);
       /* initialize com1 buffer */
rewind (stdaux);
       /* print data on screen */
printf ("PORT A is %d DECIMAL \n",PORTA);
```

7. Interfacing to the ADR112 (Basic Examples)

The following, show basic examples of interfacing various devices to the ADR112. Sample programs are written in BASIC and demonstrate proper command syntax.

A) Reading Potentiometer Position

To monitor potentiometer position, the potentiometer must be biased with 5VDC. The wiper of the pot is then connected to one of the analog inputs. The sample BASIC program reads the potentiometer position using the RD0 command which responds with a decimal value between 0000 and 4095. The value is then converted to a percent and displayed on the video screen.

10 OPEN"COM1:9600,N,8,1,CS,DS,RS" AS#1

20 CLS

30 LOCATE 1,1

40 PRINT#1, "RD0"

50 INPUT#1, POT

60 POT=(POT/4095)*100

70 PRINT "Potentiometer Position is", POT

80 GOTO 30

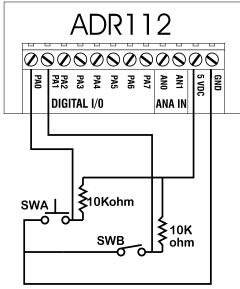
open com port;

;clear screen

;locate cursor

;send RD0 command to ADR112

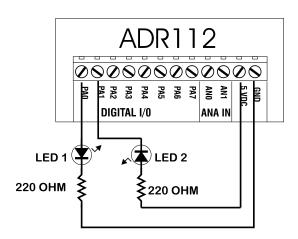
retrieve data from ADR112


;convert data to percent

;display it

;repeat procedure

B) Connecting Switches to Digital Ports


To connect switches to digital I/O lines only one additional component is required. Each digital input line used to read a switch must be tied to +5V via a 10Kohm resistor. This is to avoid leaving the digital port floating when the switch is in the open position. The switch is then connected between the digital port and ground. The sample BASIC program first configures the digital I/O lines as input and then reads the switches and displays their status on the video screen.

;opens com port 10 OPEN "COM1:9600,N,8,1,CS,DS,RS" AS#1 20 CLS :clears screen 30 LOCATE 1.1 :locates cursor 40 PRINT#1, "CPA11111111" ;configures port as input ;forces <CR> 50 REM 60 PRINT#1, "RPA0" ;reads PA0 (SW1) 70 INPUT#1, SW1 ;saves status in variable SW1 80 PRINT#1, "RPA1" ;reads PA1 (SW2) 90 INPUT#1.SW2 ;saves status in variable SW2 100 T1\$="CLOSED" IF SW1=1 THEN T1\$="OPEN ;define T1\$ 110 T2\$="CLOSED" IF SW2=1 THEN T2\$="OPEN ;define T2\$ 120 PRINT "SW1 is " T1\$;print SW1 status 130 PRINT "SW2 is " T2\$;print SW2 status 140 GOTO 60 ;repeat procedure

C) Connecting LED's to Digital Ports

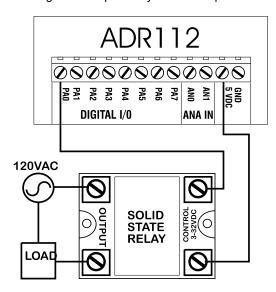
LED's may be controlled using the digital I/O lines on the ADR112. Only one additional component is needed to drive LED's. A current limit resistor is required for each LED with a value of around 220 Ohms. Digital I/O lines can source (LED1) or sink (LED2) LED current. LED1 is turned on by setting PA0 to a logic one or turned off by resetting PA0 to a logic zero. The sample BASIC program demonstrates how to turn the LED on and off.

10 OPEN "COM1:9600,N,8,1,CS,DS,RS" AS#1 ;opens com port

20 CLS ;clears screen

30 PRINT#1, "RESPA0" ;resets PA0* 40 REM ;forces <cr>

50 PRINT#1, "CPA11111110" ;configures PA0 as output


60 REM Turn on LED ;forces <cr>
70 PRINT#1, "SETPA0" ;turns on LED 80 REM Turn off LED ;forces <cr>
90 PRINT#1, "RESPA0" ;turns off LED

100 END

* PA0 remains in high impedance state until the CPA command is used to configure the port as output.

D) Driving Solid State Relays

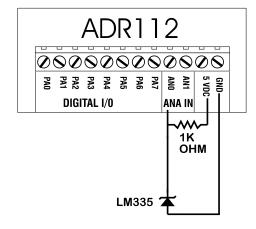
Solid-State relays that require a DC voltage to operate may be driven by ADR112 digital I/O lines directly if the current input specification for the relay is 20mA or less. The relay must be rated for the proper voltage and current required by the load. Each relay requires one digital I/O line to operate and requires no other external components. In this configuration, PA0 sinks the relay drive current. The sample BASIC program demonstrates how the relay is turned on. Note that the I/O line is SET before the CPA command is used to configure the port as output to avoid the relay turning on unexpectedly when the port is configured.

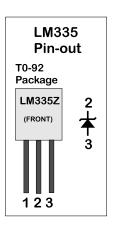
10 OPEN "COM1:9600,N,8,1,CS,DS,RS" AS#1 ;opens com port

20 CLS ;clears screen

30 PRINT#1, "SETPA0" ;sets PA0
40 REM ;forces <cr>

50 PRINT#1, "CPA11111110" ;configures PA0 as output


60 REM Turn on relay ;forces <cr>
70 PRINT#1, "RESPA0" ;turns relay on 80 REM Turn off relay ;forces <cr>
90 PRINT#1, "SETPA0" ;turns relay of


E)Temperature Measurement

The LM335 solid-state temperature sensor produces an output of 10mV per degree K. Kelvin can be converted to Celsius by subtracting 273 or 2.73 volts from the reading. The 12-bit analog inputs on the ADR112 return a value of 0000 to 4095 representing 0 to 5VDC. 2.73V corresponds to a reading of 2235.9. To convert the reading to Celsius, the following formula is used;

C= (reading-2235.9) / 8.19

The following BASIC program reads the temperature and displays its value on the host computer screen.

10 OPEN "COM1:9600,N,8,1,CS,DS,RS" AS#1

20 CLS

30 PRINT#1, "RD0"

40 INPUT#1, READING

50 TEM= (READING-2235.9) / 8.19

60 LOCATE 1.1

70 PRINT "Temperature is", TEM

80 GOTO 30

opens com port

;clears screen

;sends "RD0" command

:retrieves data

;calculates temperature

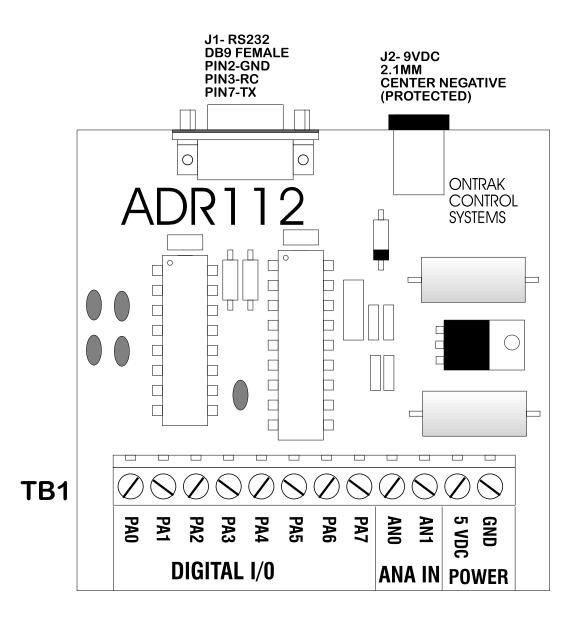
;locates cursor

;displays temperature

;repeats loop

F) 4-20mA Current Input Options

The ADR112 interface will accept 4-20 mA current inputs if proper current loop resistors are installed. The current loop(s) must be terminated using 250 ohm termination resistors connected between GND and AN0 or AN1. Provision to mount the resistors on the PCB is provided using position R3 for AN0 and R4 for AN1. Proper polarity must be observed ensuring the "-" loop connection is connected to ground and the "+ " is connected to the selected analog input.


NOTE: Improper polarity or lack of termination resistors may cause damage to the ADR112 analog inputs. ALSO, when two loops are used, there is no isolation between loops as they share a common ground connection.

To calculate current levels, read the port using the RDn command and use the following conversion:

Current = (reading / 4095) X 20

APPENDIX A CONNECTION DIAGRAM

.

APPENDIX B ELECTRICAL SPECIFICATIONS

ADR112

Supply Voltage 5VDC+/- 10% or 7-9VDC via wall adaptor

Supply Current* 15mA Typical, 30mA Maximum

Operating Temperature 0-50C

Analog Inputs (8)

Resolution 12 bits
Accuracy +/- 0.2%
Range 0-5VDC
Input Impedance 1Mohm

Digital I/O (8)

Sink Current 20mA Max
Source Current 20mA Max
Vout High 4.00V Min
Vout Low 0.8V Max
Vin High 2.2V min
Vin Low 0.8V max

Note: Maximum total source or sink current from all I/O lines in PortA = 100mA

Communication Interface

RS232

9600 baud, 8 bit words, no parity, 1 start bit

Visit our web site at http://www.ontrak.net/ for additional applications and programming examples.

^{*} All digital outputs unloaded. Supply current maximum increases depending on current drawn from power supply terminals and current sourced by digital I/O.

APPENDIX C MOUNTING DIMENSIONS

ADR Interface Mounting Dimensions (in inches) 3.0 — ADR101,ADR112 - 2.6 -Ext. Dim 3.0 X 2.8 Hole Pat. 2.6 X 2.4 2.8 2.4 **Hole Dia 0.125** 0 5.4 -ADR2000A, ADR2000B 5.0-ADR2100,ADR2010 **ADR2200** Ext. Dim 5.4 X 2.8 Hole Pat. 5.0 X 2.4 **Hole Dia 0.125** o¥ FRONT → ADRTERM 7.8 Ext. Dim 7.8 X 1.5 Hole Pat. 7.4 X 1.1 1.5 - 7.4 -Hole Dia 0.125 **FRONT**