FAIRCHILD

SEMICONDUCTOR

CD4503BC Hex Non-Inverting 3-STATE Buffer

General Description

The CD4503BC is a hex non-inverting 3-STATE buffer with high output current sink and source capability. 3-STATE outputs make it useful in bus-oriented applications. Two separate disable inputs are provided. Buffers 1 through 4 are controlled by the disable 4 input. Buffers 5 and 6 are controlled by the disable 2 input. A high level on either disable input will cause those gates on its control line to go into a high impedance state.

> Pin Assignments for DIP, SOIC and SOP OUT₆

IN-

OUT₂

 IN_3

 IN_2

Top View

October 1987 Revised January 1999

Ordering Code:

Order Number	Package Number	Package Description
CD4503BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
CD4503BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4503BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Features

■ 3-STATE outputs

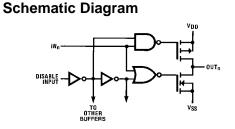
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

0UT₅

IN

OUT4

Connection Diagram


DIS₂

VDD

DIS4

IN₁

OUT

 \blacksquare Wide supply voltage range: 3.0 V_{DC} to 18 V_{DC}

■ Pin-for-pin replacement for MM80C97 and MC14503

Symmetrical turn on/turn off delays

Symmetrical output rise and fall times

Truth Table

In	Disable	Out
	Input	
0	0	0
1	0	1
Х	1	3-STATE

X = Don't Care

V_{SS}

OUT3

© 1999 Fairchild Semiconductor Corporation DS005989.prf www.fairchildsemi.com

CD4503BC

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	-0.5V to +0.5V
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

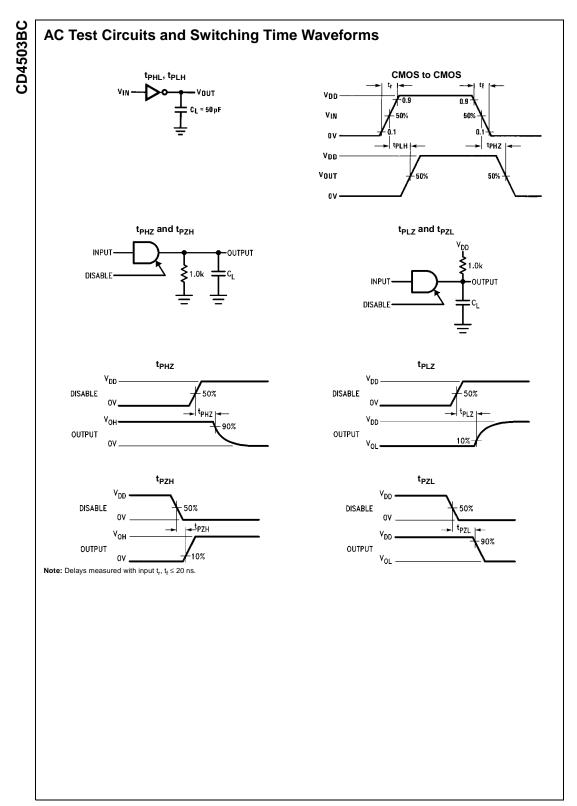
Supply Voltage (V_{DD})

Operating Temperature Range (T_A)

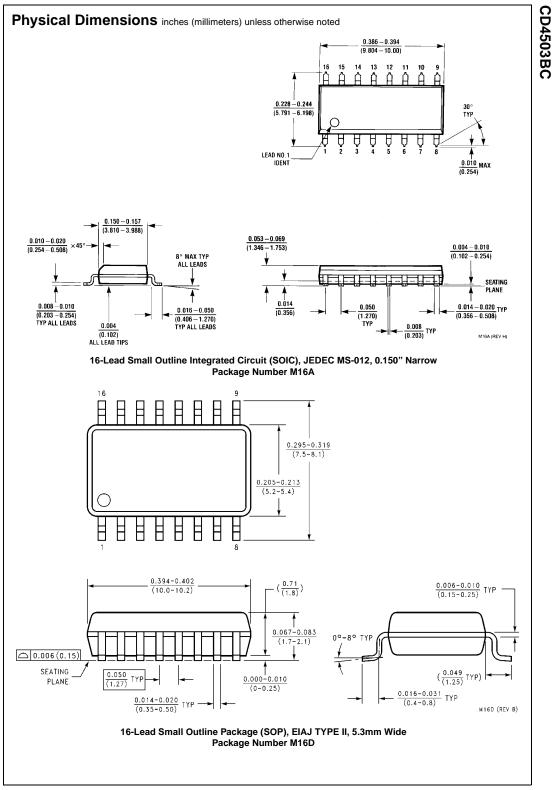
+3V to +15V -40°C to +85°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the devices cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

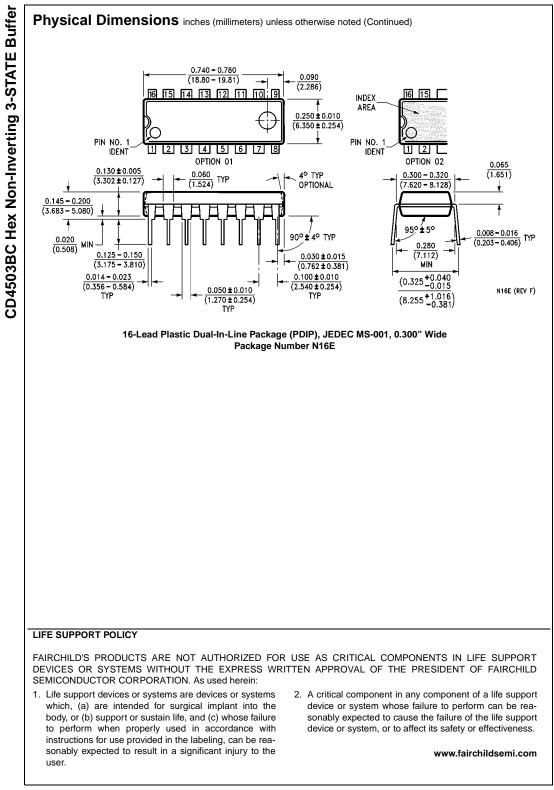
Note 2: $V_{SS} = 0V$ unless otherwise specified.


DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	-40	−40°C		+25°C			+85°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V,$		4			4		30	μΑ
	Current	$V_{IN} = V_{DD} \text{ or } V_{SS}$								
		V _{DD} = 10V,		8			8		60	μΑ
		$V_{IN} = V_{DD}$ or V_{SS}								
		$V_{DD} = 15V,$		16			16		120	μA
		$V_{IN} = V_{DD} \text{ or } V_{SS}$								
V _{OL}	LOW Level	$V_{IN} = V_{DD}$ or 0								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{IN} = V_{DD} \text{ or } 0$								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95			4.95		V
		$V_{DD} = 10V$	9.95		9.95			9.95		V
		$V_{DD} = 15V$	14.95		14.95			14.95		V
VIL	LOW Level	$V_{DD} = 5V,$		1.5		2.25	1.5		1.5	V
	Input Voltage	$V_{O} = 4.5V \text{ or } 0.5V$								
		V _{DD} = 10V,		3.0		4.50	3.0		3.0	V
		$V_0 = 9.0V \text{ or } 1.0V$								
		V _{DD} = 15V,		4.0		6.75	4.0		4.0	V
		V _O = 13.5V or 1.5V								
V _{IH}	HIGH Level	V _{DD} = 5V,	3.5		3.5	2.75		3.5		V
	Input Voltage	$V_{O} = 0.5V \text{ or } 4.5V$								
		$V_{DD} = 10V,$	7.0		7.0	5.5		7.0		V
		$V_{O} = 1.0V \text{ or } 9.0V$								
		$V_{DD} = 15V,$	11.0		11.0	8.25		11.0		V
		$V_0 = 1.5V \text{ or } 13.5V$								
I _{OL}	LOW Level Output	$V_{DD} = 4.5V, V_{OL} = 0.4V$	2.30		1.95	2.65		1.60		mA
	Current	$V_{DD}=5.0V,\ V_{OL}=0.4V$	2.5		2.10	2.75		1.75		mA
		V _{DD} = 10V, V _{OL} = 0.5V 6.5 5.45 7.0	4.45		mA					
		$V_{DD} = 15V, V_{OL} = 1.5V$	16.50		13.80	25.00		11.30		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{OH} = 4.6V$	-1.04	1	-0.88	-1.76		-0.7		mA
	Current	$V_{DD} = 10V, V_{OH} = 9.5V$	-2.60		-2.2	-4.50		-1.8		mA
		$V_{DD} = 15V, V_{OH} = 13.5V$	-7.2		-6.0	-17.6		-4.8		mA
ITL	3-STATE Leakage Current	$V_{DD} = 15V$		±0.3	1	±10 ⁻⁴	±0.3		±1.0	μA
I _{IN}	Input Current	$V_{DD} = 15V$		±0.3		±10 ⁻⁵	±0.3		±1.0	μA


Note 3: $I_{\mbox{OH}}$ and $I_{\mbox{OL}}$ are tested one output at a time.

$T_A = 25^{\circ}$ C, $C_L = 50$ pF, $R_L = 200$ k Ω , Input $t_r = t_f = 20$ ns, unless otherwise specified							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		75	100	ns	
		$V_{DD} = 10V$		35	40	ns	
		$V_{DD} = 15V$		25	30	ns	
t _{PLZ} , t _{PHZ}	Propagation Delay Time,	$V_{DD} = 5V$		80	125	ns	
	Logical Level to HIGH	$V_{DD} = 10V$		40	90	ns	
	Impedance State	$V_{DD} = 15V$		35	70	ns	
t _{PZL} , t _{PZH}	Propagation Delay Time,	$V_{DD} = 5V$		95	175	ns	
	High Impedance State to	$V_{DD} = 10V$		40	80	ns	
	Logical Level	$V_{DD} = 15V$		40 80 35 70	70	ns	
t _{TLH}	Output Rise Time	$V_{DD} = 5V$		45	80	ns	
		$V_{DD} = 10V$		23	40	ns	
		$V_{DD} = 15V$		18	35	ns	
t _{THL}	Output Fall Time	$V_{DD} = 5V$		45	80	ns	
		$V_{DD} = 10V$		23	40	ns	
		$V_{DD} = 15V$		18	35	ns	


Note 4: AC Parameters are guaranteed by DC correlated testing.

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.