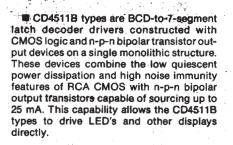
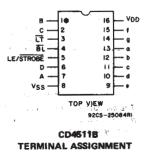
TEXAS INSTRUMENTS Data sheet acquired from Harris Semiconductor

间CD4511B供应商


CMOS BCD-to-7-Segment

Latch Decoder Drivers

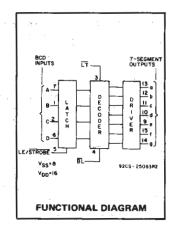
DISPLAY


High-Voltage Types (20-Volt Rating)

9

Lamp Test (LT), Blanking (BL), and Latch Enable or Strobe inputs are provided to test the display, shut off or intensity-modulate it, and store or strobe a BCD code, respectively. Several different signals may be multiplexed and displayed when external multiplexing circuitry is used. The CD4511B is supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dualin-line plastic packages (E suffix), and in chip form (H suffix).

These devices are similar to the type MC14511.


				1		
		1.4.1	~			
				- 4		
		1.5				
					:	
,				•		

and a second second

Features:

9205-25087

- High-output-sourcing capability up to 25 mA
- Input latches for BCD Code storage
- Lamp Test and Blanking capability
- 7-segment outputs blanked for BCD input codes > 1001
- 100% tested for quiescent current at 20 V
- Max. input current of 1 μA at 18 V, over full package-temperature range, 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings

Applications:

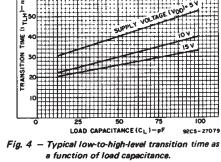
- Driving common-cathode LED displays
- Multiplexing with common-cathode LED displays
- Driving incandescent displays
- Driving low-voltage fluorescent displays

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to V _{SS} Terminal)
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = ~55°C to +100°C
For $T_A = \pm 100^{\circ}C$ to $\pm 125^{\circ}C$ Derate Linearity at $12 \text{mW/}^{\circ}C$ to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (TA)
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 + 1/32 inch (1.59 + 0.79mm) from case for 10s max +265°C

OPERATING CONDITIONS AT TA = 25°C Unless Otherwise Specified

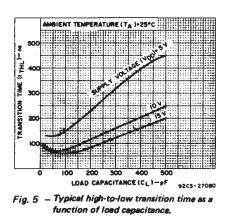
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

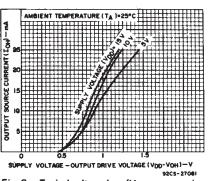

Characteristic	V _{DD}	Min.	Max.	Units
Supply:Voltage Range (T _A): (Full Package Temperature Range)		3	18	v
	5	150	-	ns
Set Up Time (t _S)	10	70	-	ns
-	15	40		ns
	5	0	_	ns
Hold Time (t _H)	10	0	-	ns
	15	0	-	ns
	5	400	_	ns
Strobe Pulse Width (t _W)	10	160	-	ns
	15	100	-	ns

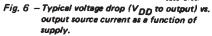

3

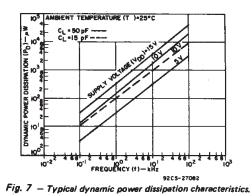
CD4511B Types

STATIC ELECTRICAL CHARACTERISTICS

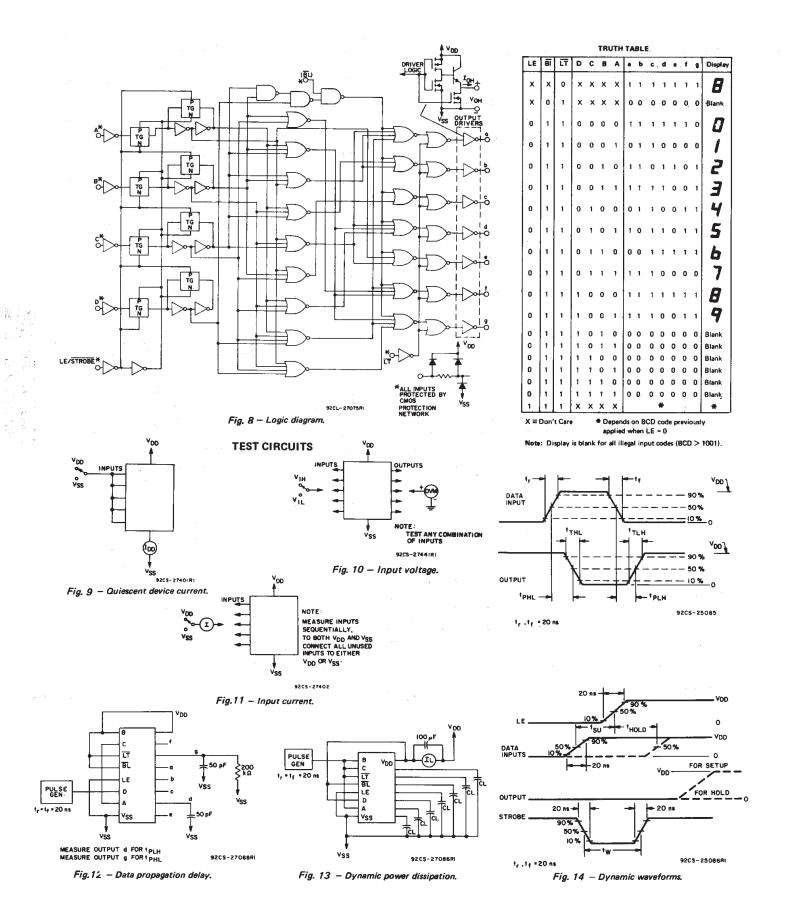

	TEST CONDITIONS													
				LIMITS AT INDICATED TEMPERATURES (°C)										
CHARACTERISTIC	юн	vo	VIN	VDD		[<u> </u>			+25		Unit		
	(mA)	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.			
Quiescent Device	_	-	_	5	5	5	150	150	-	0.04	5			
Current: IDD	-		_	10	10	10	300	300	-	0.04	10	μΑ		
Max.				15	20	20	600	600	-	0.04	20	<u>~</u>		
		-	-	20	100	100	3000	3000	-	0.08	100			
Output Voltage:										1.				
	<u> </u>	-	0,5	5			0.05		· _	0	0.05			
Low-Level VOL			0,10	10			0.05		-	0	0.05	• V -		
Max.	-		0,15	15			0.05		-	0	0.05	•		
			0,5	5	4	4	4.2	4.2	4.1	4.55	-			
High-Level VOH		-	0,10	10	9	9	9.2	9.2	9.1	9,55	- 1	V		
Min.	-		0.15	15	14	14	14.2.	14.2	14.1	14.55				
Input Low	_	0.5,3.8		5	1.5				-	_	1.5			
Voltage, V _{IL}	-	1,8.8	-	10	3				-		3	v		
Max.	· ·	1.5,13.8		15			4		-		4			
Input High	-	0.5,3.8		5	3.5				3.5	-	_			
Voltage, VIH	-	1,8.8		10			7		7	-	_	- v		
Min.		1.5,13.8		15			11		11	_	-			
	0			5	4.0	4.0 4.0 4.20 4.20 4.10 4.55				4.55		[
	5	-						-		4.25		v		
	10				3.80	3.80	3.90	3.90	3.90	4.10				
	15		-	1		-	3.50	3.50	-	3.95	-			
	20	-			3.55	3.55	3.30	-	3.40	3.75	-			
	25			•	3.40	3.40	-		3.10	3.55	~			
	0				9.0	9.0	9.20	9.20	9.10	9.55	-	v		
Output Drive	5					-	-		-	9.25	-			
Voltage:	10	-	-		8.85	8.85	9.00	9.00	9.00	9.15				
High Level VOH	15	-	-	10	-	_	-	- '	-	9.05		ľ		
Min.	20	-	-		8.70	8.70	8.40	8.40	8.60	8.90	-			
	25	-	-		8.60	8.60	-	-	8.30	8.75	· _			
	0	-		•	14.0	14.0	14.20	14.20	14.10	14.55	-			
	5	_	-		-	-	-	-	-	14.30				
	10		_	15	13.90	13.90	14.0	14.0	14.0	14.20	-	v		
	15					-	-	-		14.10	-			
	20				13.75	13.75	13.50	13.50	13.70	13.95	-			
	25		-		13.65	13.65	-	-	13.50	13.80				
A														
Output Low	_	0.4	0.5	5	0.04	0.61	0.42	0.00	0.000			mA		
(Sink) Current,		0.4	0,5 0,10	5 10	0.64	1.5	0.42	0.36	0.51	1 2.6				
^I OL Min,	-	0.5	0,10	10	4.2	4	2.8	2.4	3.4	2.6 6.8	-			
1411(1)		1.5	0,15	13	4.2	4	2.0	2.4	3.4	0.ð				
Input Current, IIN	-	0,18	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μΑ		
Max.								L	L					

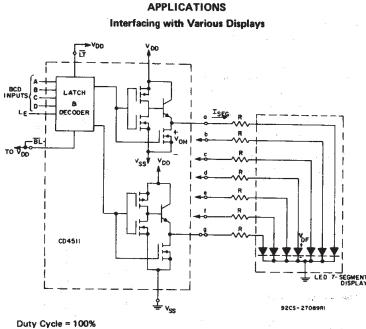





DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

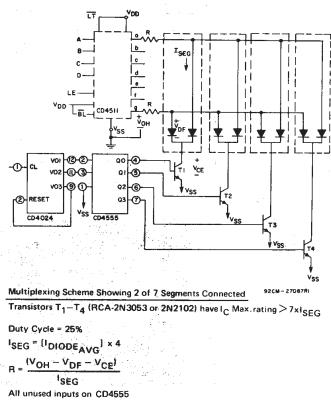
CHARACTERISTIC	Test Conditions	A	UNITS		
	i V _{DD} Volts	Min.	Тур.	Max.	
Propagation Delay Time:	5		520	1040	
(Data)	10	-	210	420	ns
High-to-Low Level, tPHL	15	-	150	300	
· .	5	_	660	1320	
Low-to-High Level, tPLH	10	-	260	520	ns
	15		180	360	
Propagation Delay Time:	5	_	350	700	
(BL)	10		175	350	ns
High-to-Low Level, tpHL	15	—	125	250	
	5		400	800	
Low-to-High Level, tpLH	10	-	175	350	ns
	15		150	300	
Propagation Delay Time:	5	-	250	500	
(LT)	10	-	125	250	ns
High-to-Low Level, tPHL	15	_	85	170	
	5		150	300	
Low-to-High Level, tpLH	10	-	75	150	ns
	15	-	50	100	
Transition Time:	5	_	40	80	
	10	_	30	60	ns
Low-to-High Level, tTLH	15	-	25	50	· . ,
	5		125	310	
	10	-	75	185	ns
High-to-Low Level, THL	15	-	65	160	
	5	150	75	-	
Minimum Set-Up Time, t _S	10	70	35	-	ns
	15	40	20	-	
••• · · · · · · ·	5	0	-75	-	
Minimum Hold Time, t _H	10	0	35	-	ns
	15	0	-20		
Construction De la Marca	5	400	200	- 1	
Strobe Pulse Width, tw	10 15	160 100	80 50		ns
	15	100			
Input Capacitance, CIN		_	5	7.5	pF

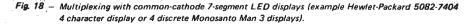




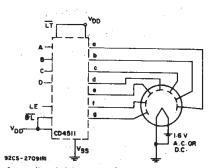
3

CD4511B Types

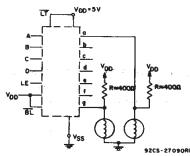

CD4511B Types


ISEG = IDIODEAVG. = 20 mA at Luminous Intensity/Segment = 250 microcandles

$$R = \frac{V_{OH} - V_{DF}}{I_{SEG}}$$


Fig. 15 - Driving common-cathode 7-segment LED displays (example Hewlet-Packard 5082-7740).

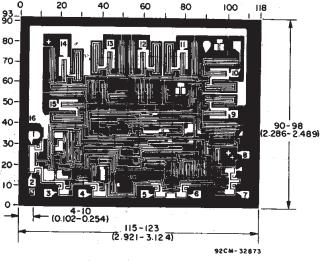
are connected to VDD or VSS.



Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

A medium-brightness intensity display can be obtained with low-voltage fluorescent displays such as the Tung-Sol Digivac S/G** Series. ** Trademark Tung-Sol Division Wagner Electric Co.

Fig. 16 - Driving low-voltage fluorescent displays.



3

COMMERCIAL CMOS HIGH VOLTAGE ICs

2 of 7 Segments Shown Connected Besistors R from VDD to each 7-segment driver output are chosen to keep all Numitron segments slightly on and warm.

Fig. 17 – Driving incandescent displays (RCA Numitron DR2000 series displays).

Dimensions and pad layout for CD4511B chip.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated