CMOS 8-Channel **Data Selector**

High-Voltage Types (20-Volt Rating)

■ CD4512B is an 8-channel data selector featuring a three-state output that can interface directly with, and drive, data lines of bus-oriented systems.

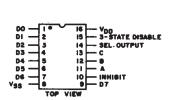
The CD4512B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD4512B Types

HANNE ETUGHI

3-STATE DISABLE

VDD * II

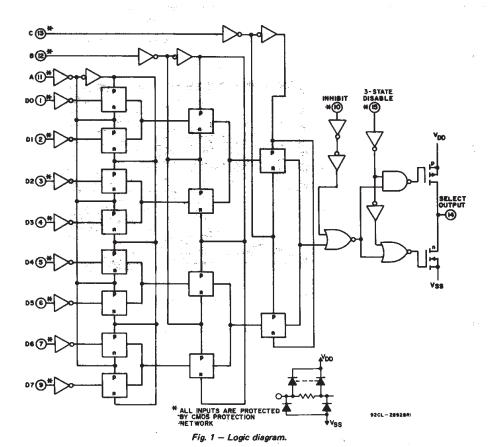

Features:

- 3-state output
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V over full packagetemperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package-temperature range):

■ Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Digital multiplexing
- Number-sequence generation
- Signal gating

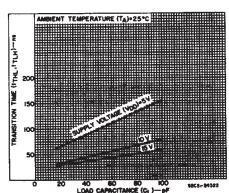

FUNCTIONAL DIAGRAM

TERMINAL ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIMITS		AMUTO	
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package Temperature Range)	3	18	· V	


TRUTH TABLE

SEL. CONT.		INH	3-STATE	SEL				
Α	В	С	114171	DISABLE	OUTPUT			
0	0	0	0	0	D0			
1	0	0	0	0	D1			
0	1	0	0	0	D2			
1	1	0	0	0	D3			
0	0	1	0	0	D4			
1	0	1	0	0	D5			
0	1	1	0	0	D6			
1	1	1	0	0	D7			
х	x	X	1	0	0			
х	X	х	x	1	High Z			

1 = High Level

0 = Low Level

X = Don't Care

Typical transition time as a function of load capacitance.

CD4512B Types

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to V _{SS} Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to VDD +0.5V
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C 500mW
For T _A = +100°C to +125°C
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (TA)
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max+265°C

AMMENT TEMPERATURE (TA)-25°C

Fig. 3 — Typical output low (sink) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS N LIMITS AT INDICATED TEMPERATURES (°C) CHARAC-CONDITIONS **TERISTIC** T +25 S V_O VIN VOD (V) (V) (V) -55 40 +85 +125 Min. Max. Typ. 0,5 5 5 5 150 150 0.04 5 Quiescent 0,10 10 10 10 300 300 0.04 10 Device Current, 0,15 15 20 20 600 600 0.04 20 I_{DD} Max. 20 0,20 100 100 3000 3000 0.08 100 0,5 5 0.64 0.61 0.42 0.4 0.36 0.51 1 **Output Low** 0.5 0,10 10 1.5 (Sink) Current 1.6 1.1 0.9 1.3 2.6 IOL Min. 0,15 4 1.5 15 4.2 2.8 2.4 3.4 6.8 4.6 0,5 5 0.64 -0.61 -0.42 -0.36 -0.51 -1 mΑ Output High 2.5 (Source) 0,5 5 -2 -1.8-1.3-1.15-1.6 -3.2 Current. 10 -1.6 -1.5 9.5 0,10 -1.1-0.9-1.32.6 _ IOH Min. 13.5 0,15 15 -4.2 -2.8-4 -2.4-3.4-6.85 0,5 0.05 0 0.05 Output Voltage 10 0.05 Low-Level, 0,10 0 0.05 _ VOL Max. 0.15 15 0.05 0 0.05 Output 0,5 5 4.95 4.95 5 Voltage: 0,10 10 9.95 9.95 10 High-Level, VOH Min. 15 0,15 14.95 14.95 15 0.5.4.5 5 1.5 ---1.5 Input Low 1,9 10 3 3 Voltage VIL Max. .5,13.5 15 4 4 5 3.5 3.5 0.5,4.5 Input High 10 Voltage, 1,9 _ 7 7 ----_ VIH Min. 1.5,13,5 15 11 11 Ξ _ Input Current ±10-5 0,18 18 ±0.1 ±0.1 ±0.1 ±1 ±1 IIN Max. 3-State Output ±0.4 ±12 ±12 ±10~ ±0.4 Leakage 0,18 0,18 18 ±0.4 μΑ Current IOUT Max.

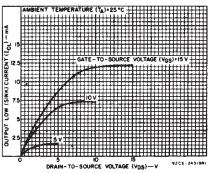


Fig. 4 — Minimum output low (sink) current characteristics.

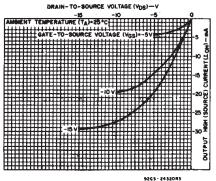


Fig. 5 - Typical output high (source) current characteristics.

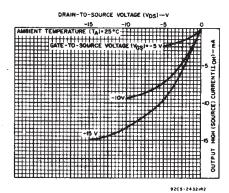


Fig. 6 — Minimum output high (source) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r,t_f = 20 ns, C_L = 50 pF, R_L = 200 $k\Omega$

CHARACTERISTIC	TEST CONDITIONS	LIMITS		UNITS
The second secon	V _{DD} (V)		Max.	••••
Propagation Delay Time, tpHL, tpLH Inhibit to Output	5 10 15	140 70 50	280 140 100	
"A" Select to Output	5 10 15	200 85 60	400 170 120	ns
Data to Output	5 10 15	180 75 55	360 150 110	
3-State Disable Delay Time: tpZL, tpLZ, tpHZ, tpZH	5 10 15	60 30 20	120 60 40	ns
Transition Time, t _{THL} , t _{TLH}	5 10 15	100 50 40	200 100 80	ns
Input Capacitance, C _{IN} (Any Input)		5	7.5	pF

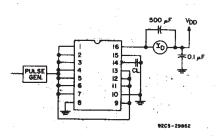


Fig. 9 - Dynamic power dissipation test circuit.

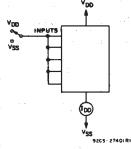


Fig. 10 - Quiescent device current test circuit.

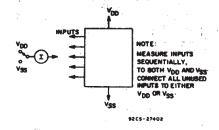


Fig. 11 - Input current test circuit.

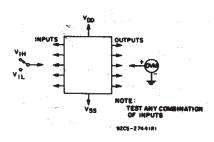
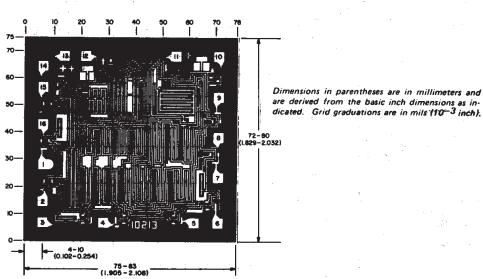



Fig. 12 - Input voltage test circuit.

10-8 AMBIENT TEMPERATURE (T_A) = 25 °C

10-8 AMBIENT TEMPERATURE (T_A) = 25

Fig. 7 — Typical dyanamic power dissipation as a function of frequency.

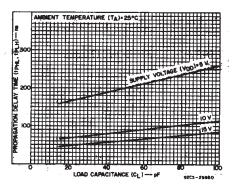


Fig. 8 — Typical propagation delay time as a function of load capacitance ("A" select to output).

Dimensions and pad layout for CD4512BH

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated