KIT 102. SERVO-MOTOR DRIVER

Servo motors are used inradio-controlled modelgcars,
planes), robotics, theme park special effects, test
equipment, industrial automation. #ie hobbyist end of the
market theyare small, compactand relatively inexpensive
at around $US20. The motors themselaesblack boxes
which contain a motor, gearbox adécoder electronics.
Three wires go intthe box; 5V, ground ansignal. A short
shaft come®ut of the motowhich usually has aircular
interface plate attached to it Most serva vetate through
about100 degrees in less than a second according to
signal input. This Kit will control up to 4servo motors
simultaneously.

ASSEMBLY
Check the components in the kiainstthe Components
List. Some of the resistors stand uptbeboard.Make sure
to get theelectrolytic capacitorand the IClaround the
correct way.

the:

Kit 102 Components
Resistors 1/4W, 5%:

AT0K i RItORS....ccceevieee 5
AT0R .o R6tORI....cccouveee 4
0.2UF (104)...eviiiiiieieeeiee e Choiiiie 1
15pF ceramic capacitor................... ClC2...ieieenn. 2
2200uF/16V electrolytic capacitor..C3...........ccccvveeeennn. 1
3.579MHz crystalcccoeveennee XTAL oo, 1
Programmed PIC16C71-04/P........... ICL..i, 1
8 PIN IC SOCKEL.....eeiiiiiiiii it 1
2 pole terminal BIOCK............eeiiiiiiiiii s 1
KLO2 PCB ...ttt 1

Potentiometers & servo motors not supplied.

; PROGRAM: SERVO.SRC

; This program generates pulse width modulation from sampled voltages.
; The PIC 16C71 has four inbuilt ADC converters (actually one
; ADC which is multiplexed) which are set up in this case to read 0 - 5V

To completethe kit between one and four 5K - 10K ;as the binary values O - 255.

potentiometersare required toproducethe input sjnal.
Connecteach pot as a voltagdivider with the center pin
going to the gjnal input. Servomotorsare requiredThey
have not been included in this kibecause usersill

; The ADC results are loaded into a delay routine which is implemented
; using the real time clock counter (RTCC). Basically the RTCC counts
; up from the loaded value until it reaches 255 and then rolls over to

; zero, triggering an interrupt.

usually have their owrparticular servos they wish t0 . asthe program is intended to drive servos, there is also a fixed delay

control.

CIRCUIT DESCRIPTION

All the work controlling the servos is done in the
preprogrammed Pl@icro-controller (uC). Assuch the kit

provides atext-book example of how a uC caeplace a

handfull of IC’s & other gluechips. Everything is done in
software. Connect a 5V power supglpable of delivering
an amp.

The input signals are between 0 - 5Vdelivered by
connecting up thepotentiometers as voltagdividers.
Insidethe PIC an ADconverter (multiplexed ken there is
morethanone inputsignal) changes theoltage signainto
the Pulse Code Modulatiosystemused byservo motors.
This signal is a 5V pulse betweenahd 2 msedong
repeated 50 times per secoiifiatis, a20msec frameate.
The width of the pulse determines the positiothefserver.
Most servos willmove to thecenter of theirtravel when
they receive al.5bmsec pulseOne extreme of motion
generally equates to a pulse width of 1.0mgbke; other
extreme to 2.0msec with smoothvariation throughout the
range, and neutral at 1.5mséthe period between the
pulses is used to synchronise the receiver.

Servos are closed loop deviceShey are constantly
comparing theiposition (proportional tdghe pulse width)

to their actual position (proportional tbe sgnal voltage
input.) If there is a difference betweémre two the servos
electronics will turn the motor to adjust the differeecsor.

This also means thaservos will resisforces whichtry to

changetheir position. Wien aservo isunpowered or not
receiving positioning pulsethe output shaftan beeasily

turned by hand.

; of about 0.8 milliseconds included. The controller thus raises the
; appropriate output pin for 0.8 msec plus the variable delay and then
; drops it again. The maximum pulse width is about 2.2 msec.

; Note that the four ADC's sample and output one at a time. Once all four
; have had a turn the controller is put to SLEEP which shuts everything

; down except the watch dog timer (WDT). When the WDT times

; out (in about 18 msec) it completely resets the controller and

; the process starts all over. Thus, in the case of all OV inputs, the

; cycle takes 4*0.8+18 equals about 21 msec to complete.

; The following constants set the ADC clock source/ speed. Uncomment one.

;AD_clk = 0 ;PIC oscillator period x 2 (<=1 MHz).
;AD_clk = 64 ;PIC oscillator period x 8 (<=4 MHz).
;AD_clk = 128 ;PIC oscillator period x 32 (<= 16 MHz)
AD_clk = 192 ;Independent RC oscillator, 2-6 us.

; The following constants select a pin for ADC input. Uncomment one.

AD_ch = 0 ;ADC channel 0 (Ain0, pin 17).
;AD_ch = 8 ;ADC channel 1 (Ainl, pin 18).
;AD_ch = 16 ;ADC channel 2 (AinO, pin 1).
;AD_ch = 24 ;ADC channel 3 (Ain0, pin 2).
AD_ctl = AD_clk | AD_ch ;Logical OR.

; The following constants determine which pins will be usable by the ADC
; & whether VVdd or ra.3 will serve as the voltage reference. Uncomment one.

AD_ref = 0 ;ra.0 through 3 usable, Vdd reference.

;AD_ref = 1 ;ra.0 through 3 usable,ra.3 reference.

;AD_ref = 2 ;ra.0/1 usable, Vdd reference.

;AD_ref = 3 ;All unusable--digital inputs only.
device picl6c71,hs_osc,wdt_on,pwrt_off,protect_on
id 'ADC1'

counterl = 10h

counter2 = 1ih

integerl = 12h

integer2 = 13h

dummy = 14h

flag

servo0
servol
servo2
servo3

start

not_done

not_donel

not_done2

counter.

KIT 102. SERVO-MOTOR DRIVER

15h

rb.5
rb.4
rb.3
rb.2
org O
jmp start
org 4 ;Interrupt jumps here
cirb RTIF
setb flag.0
reti
mov lra, #255 ;Set ra to input.
mov !rb, #0 ;Set rb to output.
clr rb ;Clear port rb
mov dummy,#255
mov intcon,#0 ;Turn interrupts off.
mov adconO,#AD_ctl ;Set AD clock and channel.
setb rp0 ;Enable register page 1.
mov adconl#AD_ref ;Set usable pins, Vref.
mov option,#00001000b ;WDT on, no prescale
clrb rpO ;Back to register page 0.
setb adon ;Apply power to ADC.
setb go_done ;Start conversion.

snb go_done ;Poll for O (done).
jmp not_done ;If 1, poll again.
mov counter2,adres ;Move ADC result into counter.

mov integerl #3 ;Offset constant

mov integer2,#5 ;ADC multiplier

setb servoO ;Output pulse to servo 0
call delay

clrb servoO

call pause ;ADC settling delay

clrb rp0 ;Ensure reg page 0

clrb chsl ;Select channel 1

setb chsO ;AInl

mov dummy,#255 ;Reload dummy variable
clrb adres ;Make sure

setb go_done ;Start conversion.
snb go_done ;Poll for 0 (done).
jmp not_donel ;If 1, poll again.
mov counter2,adres ;Move ADC result into counter.

mov integerl,#3 ;Offset constant

mov integer2,#5 ;ADC multiplier

setb servol ;Output pulse to servo 1

call delay

clrb servol

call pause

clrb rp0 ;Ensure reg page 0

setb chsl ;Select channel 2

clrb chsO ; Ain 2

mov dummy,#255

clr adres

setb go_done ;Start conversion.
snb go_done ;Poll for O (done).

jmp not_done2 ;If 1, poll again.

mov counter2,adres ;Move ADGesult into
mov integerl #3 ;Offset constant

mov integer2,#5 ;ADC multiplier

setb servo2 ;Output pulse to servo 2

call delay

clrb servo2

call pause

clrb rp0 ;Ensure reg page 0

not_done3

counter.

setb chsl ;Select channel 3
setb chsO ;Ain 3

mov dummy,#255

clr adres

setb go_done
snb go_done
jmp not_done3

;Start conversion.
;Pall for 0 (done).
;If 1, poll again.

mov counter2,adres ;Move ADC gt into
mov integerl #3 ;Offset constant

mov integer2,#5 ;ADC multiplier

setb servo3 ;Output pulse to servo 3
call delay

clrb servo3

sleep

jmp start ;Time out after 18 msec

; The number of loops this delay routine makes is dependent on the result of
; the AD conversion. The higher the voltage, the longer the delay.

delay

clrb rp0 ;Page 0
mov intcon,#10100000b ;Enable RTCC interrupt

sikkkokkkkoakokkk Eixad delay part of routine ***#¥xkikkiokkiorx

delayl
waitl

mov RTCC,#55 ;Fixed delay
jnb flag.0,waitl ; of 200 till interrupt
clrb flag.0 ;Flag set on interrupt
djnz integerl,delayl ;Three times through

skkkkkkdkkikkkkkkk \[griable delay part of routine ***x¥xkkkkxkxk

load
wait2

pause
settle
ADC

sub dummy,counter2 ;RTCC counts UP!

mov RTCC,dummy ;Load RTCC

jnb flag.0,wait2 ;Note infinite loop

clrb flag.0

djnz integer2,load ;Five times through

mov intcon,#0 ;Disable interrupt

ret

mov counterl,#120 ;Adds a short settling
dinz counterl,settle tme to the

ret

**k

