

PCI-8164 / MPC-8164

Advanced 4-Axis Servo / Stepper
Motion Control Card

User's Guide

Recycle Paper

© Copyright 2003 ADLINK Technology Inc

All Rights Reserved.

Manual Rev. 1.30: 4 June, 2003

Part No: 50-11124-103

The information in this document is subject to change without prior notice
in order to improve reliability, design, and function and does not represent
a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright
laws. All rights are reserved. No part of this manual may be reproduced by
any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks

NuDAQ and PCI-8164/MPC-8164 are registered trademarks of ADLINK
Technology Inc, MS-DOS & Windows 95/NT/2000/XP are registered
trademarks of Microsoft Corporation and Borland C++ is a registered
trademark of Borland International, Inc. Other product names mentioned
herein are used for identification purposes only and may be trademarks
and/or registered trademarks of their respective companies.

Getting service from ADLINK
Customer Satisfaction is the most important priority for ADLINK Tech Inc.
If you need any help or service, please contact us.

ADLINK Technology Inc.
Web Site http://www.adlinktech.com

Sales & Service Service@adlinktech.com

NuDAQ + USBDAQ nudaq@adlinktech.com

Automation automation@adlinktech.com

NuIPC nuipc@adlinktech.com

Technical
Support

NuPRO / EBC nupro@adlinktech.com

TEL +886-2-82265877 FAX +886-2-82265717

Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan.

Please email or FAX us your detailed information for prompt, satisfactory,
and consistent service.

Detailed Company Information
Company/Organization

Contact Person

E-mail Address

Address

Country

TEL FAX

Web Site

Questions
Product Model

Environment

OS:
Computer Brand:
M/B: CPU:
Chipset: BIOS:
Video Card:
NIC:
Other:

Detail Description

Suggestions for ADLINK

Table of Contents • i

Table of Contents
Chapter 1 Introduction .. 1
1.1 Features.. 5
1.2 Specifications.. 7
1.3 Supported Software .. 8

1.3.1 Programming Library.. 8
1.3.2 Motion Creator.. 8

Chapter 2 Installation .. 9
2.1 Package Contents .. 9
2.2 PCI-8164 Outline Drawing .. 10
2.2A MPC-8164 Outline Drawing .. 11
2.3 PCI-8164 Hardware Installation .. 12

2.3.1 Hardware configuration .. 12
2.3.2 PCI slot selection.. 12
2.3.3 Installation Procedures... 12
2.3.4 Troubleshooting:... 12

2.3A MPC-8164 Hardware Installation .. 13
2.3A.1 Hardware configuration .. 13
2.3A.2 Troubleshooting:... 14

2.4 Software Driver Installation ... 14
2.5 CN1 Pin Assignments: External Power Input (PCI-8164 Only) 15
2.6 CN3 Pin Assignments: Manual Pulse Input (PCI-8164 Only).......... 16
2.6A CN3 Pin Assignments: General Purpose DIO (MPC-8164 Only).... 16
2.7 CN2 Pin Assignments: Main connector .. 17
2.8 CN4 Pin Assignments: Simultaneous Start/Stop (PCI-8164 Only).. 18
2.9 CN5 Pin Assignment: TTL Output (PCI-8164 Only)........................ 18
2.10 Jumper Setting for Pulse Output (PCI-8164 Only) 19
2.11 Switch Setting for EL Logic ... 19
2.12 CN3 Pin Assignment: General Purpose DI/DO ports (MPC-8164 Only)
 ……………………………………………………………………………..20
Chapter 3 Signal Connections.. 21
3.1 Pulse Output Signals OUT and DIR.. 22
3.2 Encoder Feedback Signals EA, EB and EZ.................................... 24
3.3 Origin Signal ORG .. 26
3.4 End-Limit Signals PEL and MEL... 27
3.5 Ramping-down & PCS.. 28
3.6 In-position Signal INP ... 29
3.7 Alarm Signal ALM ... 30
3.8 Deviation Counter Clear Signal ERC .. 31
3.9 General-purpose Signal SVON... 32
3.10 General-purpose Signal RDY ... 32
3.11 Position compare output pin: CMP ... 33

ii • Table of Contents

3.12 Position latch input pin: LTC ... 34
3.13 Pulse Input Signals PA and PB (PCI-8164) 35
3.14 Simultaneously Start/Stop Signals STA and STP(PCI-8164 Only) . 35
3.15 General Purpose TTL Output (PCI-8164 only)................................ 37
3.16 Termination Board .. 37
3.17 General Purpose DIO (MPC-8164 only) ... 38

3.17.1 Isolated Input channels .. 38
3.17.2 Isolated Output channels ... 38
3.17.3 Example of input connection.. 39
3.17.4 Example of output connection.. 40

Chapter 4 Operation Theory ... 41
4.1 Motion Control Modes... 41

4.1.1 Pulse Command Output ... 42
4.1.2 Velocity mode motion ... 44
4.1.3 Trapezoidal Motion... 45
4.1.4 S-curve Profile Motion .. 47
4.1.5 Linear interpolation for 2-4 axes ... 49
4.1.6 Circular interpolation for 2 axes.. 53
4.1.7 Circular interpolation with Acc/Dec time 54
4.1.8 Relationship between Velocity and Acceleration Time. 55
4.1.9 Continuous motion ... 57
4.1.10 Home Return Mode .. 62
4.1.11 Manual Pulse Mode (PCI-8164 Only)................................. 70

4.2 The motor driver interface... 70
4.2.1 INP ... 71
4.2.2 ALM... 72
4.2.3 ERC... 73
4.2.4 SVON and RDY.. 73

4.3 The limit switch interface and I/O status ... 74
4.3.1 SD/PCS.. 74
4.3.2 EL.. 75
4.3.3 ORG.. 76

4.4 The Counters .. 76
4.4.1 Command position counter .. 76
4.4.2 Feedback position counter ... 77
4.4.3 Position error counter ... 79
4.4.4 General purpose counter.. 79
4.4.5 Target position recorder ... 80

4.5 Multiple PCI-8164 Card Operation (PCI-8164 Only) 81
4.6 Change position or speed on the fly ... 82

4.6.1 Change speed on the fly .. 82
4.6.2 Change position on the fly.. 86

4.7 Position compare and Latch ... 88
4.7.1 Comparators of the 8164.. 88
4.7.2 Position compare.. 89
4.7.3 Position Latch... 92

Table of Contents • iii

4.8 Hardware backlash compensator and vibration suppression.......... 92
4.9 Software Limit Function .. 93
4.10 Interrupt Control.. 94
Chapter 5 Motion Creator.. 99
5.1 Execute Motion Creator .. 100
5.2 About Motion Creator.. 100
5.3 Motion Creator Form Introducing .. 101

5.3.1 Main Menu ... 101
5.3.2 Interface I/O Configuration Menu 101
5.3.3 Pulse IO & Interrupt Configuration Menu.......................... 103
5.3.4 Operation menu:... 104

Chapter 6 Function Library ... 110
6.1 List of Functions.. 110
6.2 C/C++ Programming Library ... 117
6.3 Initialization ... 118
6.4 Pulse Input/Output Configuration.. 121
6.5 Velocity mode motion ... 122
6.6 Single Axis Position Mode .. 125
6.7 Linear Interpolated Motion .. 129
6.8 Circular Interpolation Motion ... 134
6.9 Home Return Mode .. 140
6.10 Manual Pulse Motion .. 141
6.11 Motion Status.. 144
6.12 Motion Interface I/O .. 145
6.13 Motion I/O Monitoring ... 147
6.14 Interrupt Control.. 148
6.15 Position Control and Counters .. 153
6.16 Position Compare and Latch... 156
6.17 Continuous motion.. 161
6.18 Multiple Axes Simultaneous Operation ... 162
6.19 General-purposed TTL output (PCI-8164 Only)........................... 165
6.20 General-purposed DIO (MPC-8164 Only).................................... 166
Chapter 7 Connection Example.. 167
7.1 General Description of Wiring ... 167
7.2 Connection Example with Servo Driver... 168
7.3 Wiring with DIN-814M... 171
7.4 Wiring with DIN-814P.. 175
Appendix A Color code of CN3 Cable (MPC-8164 Only)................... 179
Warranty Policy.. 180

iv • How to Use This Guide

How to Use This Guide
This manual is designed to help you use the PCI-8164/MPC-8164 and
describes how to modify various settings to meet your requirements. It is
divided into seven chapters:

Chapter 1 Introduction

 An overview of the product features, applications, and
specifications.

Chapter 2 Installation

 Describes how to install the PCI-8164/MPC-8164.

Chapter 3 Signal Connections

 Details the connector pin assignments and how to connect
external signals and devices to the PCI-8164/MPC-8164.

Chapter 4 Operation Theory

 Describes the operations of the PCI-8164/MPC-8164.

Chapter 5 Motion Creator

 Details how to use the Windows based utility program to
configure and run tests with the PCI-8164/MPC-8164.

Chapter 6 C/C++ Function Library

 Describes high-level programming in C/C++ to aid in
programming the PCI-8164/MPC-8164.

Chapter 7 Connection Example

 Illustrates typical connection examples between the PCI-
8164/MPC8164 and servo/stepping drivers.

Introduction • 1

1

Introduction

The PCI-8164 is an advanced 4-axis motion controller card with a PCI
interface. It can generate high frequency pulses (6.4MHz) to drive stepper
or servomotors. As a motion controller, it can provide 2-axis circular
interpolation, 4-axis linear interpolation, or continuous interpolation for
continual velocity. Also, changing position/speed on the fly is available with
a single axis operation.

Multiple PCI-8164 cards can be used in one system. Incremental encoder
interface on all four axes provide the ability to correct positioning errors
generated by inaccurate mechanical transmissions. With the aid of on
board FIFO, the PCI-8164 can also perform precise and extremely fast
position comparison and trigger functions without compromising CPU
resources. In addition, a mechanical sensor interface, servo motor interface,
and general-purposed I/O signals are provided for easy system integration.

Figure 1 shows the functional block diagram of the PCI-8164 card. The PCI-
8164 uses one ASIC (PCL6045) to perform all 4 axes motion controls. The
motion control functions include linear and S-curve
acceleration/deceleration, circular interpolation between two axes, linear
interpolation between 2~4 axes, continuous motion positioning, and 13
home return modes. All these functions and complex computations are
performed internally by the ASIC, thus limiting the impact on the PC’s CPU
usage.

2 • Introduction

Figure 1: Block Diagram of the PCI-8164

PCI Bus

PCI Bus
Controller

FPGAFIFO

PCL6045

Pulser
(CN3)

STA/STP
(CN4)

TTL Dout
(CN5)

Pulse I/O Mechanical
Interface

Servo Driver
Interface

Latch
Input

Compare
Output

Isolation

OUT
DIR

EA,EB,EZ

+EL,-EL
SD

ORG

INP,ALM
ERC

SVON
RDY

CMP1
CMP2

LTC3
LTC4

DC/DC

Ext +24V

+5VExt +5V

Introduction • 3

The MPC-8164 is an advanced 4-axis motion controller card with a PC104
interface. All features and specification are the same as the PCI-8164,
except for slight differences in the user I/O interfaces. Refer to the previous
introduction for more details. Figure 2 is the block diagram of the MPC-
8164 card.

Figure 2: Block Diagram of the MPC-8164

PC104 Bus

 CPLD

FPGAFIFO

PCL6045

(CN3)
8In/8Out
(Isolation)

Pulse I/O Mechanical
Interface

Servo Driver
Interface

Latch
Input

Compare
Output

Isolation

OUT
DIR

EA,EB,EZ

+EL,-EL
SD

ORG

INP,ALM
ERC

SVON
RDY

CMP1
CMP2

LTC3
LTC4

DC/DC

Ext +24V

+5VExt +5V

4 • Introduction

Motion Creator is a Windows-based application development software
package included with the PCI-8164/MPC-8164. Motion Creator is useful
for debugging a motion control system during the design phase of a project.
An on-screen display lists all installed axes information and I/O signal status
of the PCI-8164/MPC-8164.

DOS and Windows programming libraries are also included for C++ and
Visual Basic. Sample programs are provided to illustrate the operations of
the functions.

Figure 3 illustrates a flow chart of the recommended process in using this
manual in developing an application. Refer to the related chapters for
details of each step.

Figure 3: Flow chart for building an application

Hardware Installation
Jumper Setting

Wiring

Using Motion Creator
to Configure a System

System is
OK?

END

Chapter 2 & 3

Chapter 5

Using Motion Creator
to Verify Operations Chapter 4 & 5

Using the Function
Libraries to Develop

Applications
Chapter 4 & 6

No

Yes

Introduction • 5

1.1 Features

The following list summarizes the main features of the PCI-8164 motion
control system.

• 32-bit PCI bus Plug and Play
• 4 axes of step and direction pulse output for controlling stepping or

servomotor
• Maximum output frequency of 6.55 MPPS
• Pulse output options: OUT/DIR, CW/CCW
• Programmable acceleration and deceleration time for all modes
• Trapezoidal and S-curve velocity profiles for all modes
• Any 2 of 4 axes circular interpolation
• Any 2-4 of 4 axes linear interpolation
• Continuous interpolation for contour following motion
• Change position and speed on the fly
• Change speed by condition comparing
• 13 home return modes with auto searching
• Hardware backlash compensator and vibration suppression
• 2 software end-limits for each axis
• 28-bit up/down counter for incremental encoder feedback
• Home switch, index signal (EZ), positive, and negative end limit

switches interface on all axes
• 2-axis high speed position latch input
• 2-axis position compare trigger output with 4k FIFO auto-loading
• All digital input and output signals are 2500Vrms isolated
• Programmable interrupt sources
• Simultaneous start/stop motion on multiple axes
• Manual pulser input interface(Manual Pulser is a device like a small

steering wheel which generate pulses when turning it)
• Software supports a maximum of up to 12 PCI-8164 cards (48 axes)

operation in one system
• Compact, half size PCB
• Includes Motion Creator, a Microsoft Windows-based application

development software
• PCI-8164 libraries and utilities for DOS and Windows 9x/NT/2000/XP.

Also supported under Linux

6 • Introduction

The following list summarizes the main features of the MPC-8164
motion control system.

• 16-bit PC104 Bus
• 4 axes of step and direction pulse output for controlling stepping or

servomotor
• Maximum output frequency of 6.55 MPPS
• Pulse output options: OUT/DIR, CW/CCW
• Programmable acceleration and deceleration time for all modes
• Trapezoidal and S-curve velocity profiles for all modes
• Any 2 of 4 axes circular interpolation
• Any 2-4 of 4 axes linear interpolation
• Continuous interpolation for contour following motion
• Change position and speed on the fly
• Change speed by comparator condition
• 13 home return modes with auto searching
• Hardware backlash compensator and vibration suppression
• 2 Software end-limits for each axis
• 28-bit up/down counter for incremental encoder feedback
• Home switch, index signal(EZ), positive, and negative end limit

switches interface on all axes
• 2-axis high speed position latch input
• 2-axis position compare trigger output with 4k FIFO auto-loading
• All digital input and output signals are 2500Vrms isolated
• Programmable interrupt sources
• 8 channels of general purpose photo-isolated digital inputs
• 8 channels of general purpose open collector digital outputs
• Software supports a maximum of up to 4 MPC-8164 cards (16 axes)

operation in one system
• Includes Motion Creator, Microsoft Windows-based application

development software
• MPC-8164 Libraries and Utilities for DOS and Windows 98/NT/2000/XP.

Also support Windows XP/NT Embedded
• MPC-8164 Libraries for Linux and Windows CE systems

Introduction • 7

1.2 Specifications

 Applicable Motors:
• Stepping motors
• AC or DC servomotors with pulse train input servo drivers

 Performance:
• Number of controllable axes: 4
• Maximum pulse output frequency: 6.55MPPS, linear, trapezoidal,

or S-Curve velocity profile drive
• Internal reference clock: 19.66 MHz
• 28-bit up/down counter range: 0-268,435,455 or –134,217,728 to

+134,217,727
• Position pulse setting range (28-bit): -134,217,728 to

+134,217,728
• Pulse rate setting range (Pulse Ratio = 1: 65535):

 1 PPS to 6553.5 PPS. (Multiplier = 0.1)
 1 PPS to 65535 PPS. (Multiplier = 1)
 100 PPS to 6553500 PPS. (Multiplier = 100)

 I/O Signales:
• Input/Output signals for each axis
• All I/O signal are optically isolated with 2500Vrms isolation

voltage
• Command pulse output pins: OUT and DIR
• Incremental encoder signals input pins: EA and EB
• Encoder index signal input pin: EZ

• Mechanical limit/switch signal input pins: ±EL, SD/PCS, and ORG
• Servomotor interface I/O pins: INP, ALM, and ERC
• Position latch input pin: LTC
• Position compare output pin: CMP
• General-purposed digital output pin: SVON
• General-purposed digital input pin: RDY
• Pulse signal input pin: PA and PB (PCI-8164 only)
• Simultaneous Start/Stop signal: STA and STP (PCI-8164 only)

8 • Introduction

 General-Purposed Output
• 6 TTL level digital outputs (PCI-8164 only)
• 8 digital inputs / 8 digital outputs (MPC-8164 only)

 General Specifications
• Connectors: 100-pin SCSI-type connector

• Operating Temperature: 0°C - 50°C

• Storage Temperature: -20°C - 80°C
• Humidity: 5 - 85%, non-condensing

 Power Consumption
• Slot power supply (input): +5V DC ±5%, 900mA max

• External power supply (input): +24V DC ±5%, 500mA max

• External power supply (output): +5V DC ±5%, 500mA, max
 PCI-8164 Dimension: 185mm(L) X 98.4mm(W)
 MPC-8164 Dimension: 152mm(L) X 104.7mm(W)

1.3 Supported Software

1.3.1 Programming Library
MS-DOS Borland C/C++ (Version: 3.1) programming libraries and Windows
95/98/NT/2000/XP DLLs are provided for the PCI-8164. These function
libraries are shipped with the board. Support for Linux is also included.

MPC-8164 supports DOS/Windows 98/NT/2000/XP, Windows XP/NT
Embedded, Linux, and Windows CE.

1.3.2 Motion Creator
This Windows-based utility is used to setup cards, motors, and systems. It
can also aid in debugging hardware and software problems. It allows users
to set I/O logic parameters to be loaded in their own program. This product
is also bundled with the card.

Refer to Chapter 5 for more details.

Installation • 9

2

Installation

This chapter describes how to install the PCI-8164/MPC-8164. Please
follow these steps below:

• Check what you have (section 2.1)
• Check the PCB (section 2.2)
• Install the hardware (section 2.3)
• Install the software driver (section 2.4)
• Understanding the I/O signal connections (chapter 3) and their

operation (chapter 4)
• Understanding the connector pin assignments (the remaining sections)

and wiring the connections

2.1 Package Contents

In addition to this User’s Guide, the package also includes the following
items:

• PCI-8164/MPC-8164: advanced 4-Axis Servo / Stepper Motion Control
Card

• ADLINK All-in-one Compact Disc
• +24V power input cable (for CN1) accessory (PCI-8164 only)
• An optional terminal board for wiring purposes if a different model is

ordered.

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and carton
to ship or store the product in the future.

10 • Installation

2.2 PCI-8164 Outline Drawing

Figure 4: PCB Layout of the PCI-8164

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Manual Pulse Signal Connector
CN4: Simultaneous Start / Stop Connector
CN5: General purpose TTL output
S1: End limit logic selection switch
J1~J8: Pulse output selection jumper

Figure 5: PCI-8164 Face Plate

PCL6045

CN4CN3
CN1

CN2

J5 J8

J1 J4

CN5

S1

{Front Panel}

CN2 CN1 1

51

50

100

+24V GND

Installation • 11

2.2A MPC-8164 Outline Drawing

Figure 6: PCB Layout of the MPC-8164

Figure 7: MPC-8164 Face Plate

12 • Installation

2.3 PCI-8164 Hardware Installation

2.3.1 Hardware configuration
The PCI-8164 is fully Plug and Play compliant. Hence memory allocation
(I/O port locations) of the PCI card are assigned by the system BIOS. The
address assignment is done on a board-by-board basis for all PCI cards in
the system.

2.3.2 PCI slot selection
Your computer system may have both PCI and ISA slots. Do not force the
PCI card into a PC/AT slot. The PCI-8164 can be used in any PCI slot.

2.3.3 Installation Procedures
1. Read through this manual and setup the jumper according to your

application

2. Turn off your computer. Turn off all accessories (printer, modem,
monitor, etc.) connected to computer. Remove the cover from your
computer.

3. Select a 32-bit PCI expansion slot. PCI slots are shorter than ISA or
EISA slots and are usually white or ivory.

4. Before handling the PCI-8164, discharge any static buildup on your
body by touching the metal case of the computer. Hold the edge of the
card and do not touch the components.

5. Position the board into the PCI slot you have selected.

6. Secure the card in place at the rear panel of the system unit using
screws removed from the slot.

2.3.4 Troubleshooting:
If your system doesn’t boot or if you experience erratic operation with your
PCI board in place, it’s most likely caused by an interrupt conflict (possibly
an incorrect ISA setup). In general, the solution, once determined it is not a
simple oversight, is to consult the BIOS documentation that comes with
your system.

Check the control panel of the Windows system if the card is listed by the
system. If not, check the PCI settings in the BIOS or use another PCI slot.

Installation • 13

2.3A MPC-8164 Hardware Installation

2.3A.1 Hardware configuration
The MPC-8164 is PC104 compliant. I/O port locations and IRQ channels for
the card are assigned by onboard DIP switches and jumpers. Refer to the
following settings:

Base address setting:

The base address is set by pin 2 to 4 of SW2. Note that pin1 is reserved. If
all dips are set to the “OFF” position, the base address would be 0x200.
Default settings are dependant on the order.

DIP Switch
(2 3 4)

Base
Address

DIP Switch
(2 3 4)

Base
Address

1 1 1 0x3C0 1 1 0 0x2C0
0 1 1 0x380 0 1 0 0x280
1 0 1 0x340 1 0 0 0x240
0 0 1 0x300 0 0 0 0x200

IRQ setting:

The IRQ channel is assigned by setting JP1

1 2 3 4

ON

JP
X

15
12
11
10

9
7
6
5
3

Disable Interrupt
Use IRQ15
Use IRQ 12
Use IRQ 11
Use IRQ 10
Use IRQ 9
Use IRQ 7
Use IRQ 6
Use IRQ 5
Use IRQ 3

14 • Installation

2.3A.2 Troubleshooting:
MPC-8164: Make sure that the system’s I/O address and IRQ channel are
available for the card. If not, change the setting to an empty I/O address
and IRQ channel.

2.4 Software Driver Installation

PCI-8164:

Step 1: Auto run the ADLINK All-In-One CD. Choose Driver Installation ->
Motion Control -> PCI-8164.

Step 2: Follow the procedures of the installer.

Step 3: After setup installation is completed, restart windows.

Note: If using MS-DOS, locate the directory \Motion Control\PCI-
8164\DOS_BC in the CD-ROM.

MPC-8164

Step1: Insert the ADLINK All-In-One CD and let Windows auto-run the
setup program. Choose Driver Installation -> Motion Control ->
MPC-8164

Step2: Run the “MPC-8164 Add/Remove” utililty from the start menu or
installed directory to register the new card. The I/O address and
IRQ channel must be the same as the settings on the board.

Step3: Restart computer

Note: If using MS-DOS, use the software in the directory \Motion
Control\MPC-8164\DOS_BC on the CD-ROM.

Installation • 15

2.5 CN1 Pin Assignments: External Power Input
(PCI-8164 Only)

CN1 Pin No Name Description
1 EXGND External power ground
2 EX+24V +24V DC ± 5% External power supply

Notes:

1. CN1 is a plug-in terminal board with no screws.

2. Be sure to use the external power supply. A +24V DC is used by
external input/output signal circuits. The power circuit is configured as
shown below.

3. Wires for connection to CN1

Solid wire: ϕ 0.32mm to ϕ 0.65mm (AWG28 to AWG22)

Twisted wire: 0.08mm2 to 0.32mm2 (AWG28 to AWG22)

Naked wire length: 10mm standard

The following diagram shows the external power supply system of the PCI-
8164. An external +24V power must be provided. An on-board regulator
generates +5V for both internal and external usage.

Note: DO NOT use the +5V power source to drive too many devices
simultaneously, especially stepper motors or external encoders. The output
current capacity is limited.

Note: MPC-8164 does NOT have a CN1 for power input. Use the E_24V
and GND pins of CN2 for power input.

16 • Installation

2.6 CN3 Pin Assignments: Manual Pulse Input
(PCI-8164 Only)

CN3 is for manual pulser input.
No. Name Function (Axis)

1 GND Bus power ground
2 PB4 Pulser B-phase signal input,
3 PA4 Pulser A-phase signal input,
4 PB3 Pulser B-phase signal input,
5 PA3 Pulser A-phase signal input,
6 +5V Bus power, +5V
7 GND Bus power ground
8 PB2 Pulser B-phase signal input,
9 PA2 Pulser A-phase signal input,

10 PB1 Pulser B-phase signal input,
11 PA1 Pulser A-phase signal input,
12 +5V Bus power, +5V

Note: +5V and GND pins are provided by the PCI-Bus. Therefore, these
signals are not isolated.

2.6A CN3 Pin Assignments: General Purpose DIO
(MPC-8164 Only)

Pin No Signal Name Pin No Signal Name
1 DOCOM 2 DOCOM
3 DOCOM 4 DOCOM
5 DO0 6 DO1
7 DO2 8 DO3
9 DO4 10 DO5
11 DO6 12 DO7
13 -- 14 DICOM
15 DICOM 16 DICOM
17 DICOM 18 DI0
19 DI1 20 DI2
21 DI3 22 DI4
23 DI5 24 DI6
25 DI7 26 --

Installation • 17

2.7 CN2 Pin Assignments: Main connector
CN2 is the major connector for the motion control I/O signals.

No. Name I/O Function (axis /) No. Name I/O Function (axis /)
1 VPP O +5V power supply output 51 VPP O +5V power supply output
2 GND Ext. power ground 52 GND Ext. power ground
3 OUT1+ O Pulse signal (+), 53 OUT3+ O Pulse signal (+),
4 OUT1- O Pulse signal (-), 54 OUT3- O Pulse signal (-),
5 DIR1+ O Dir. signal (+), 55 DIR3+ O Dir. signal (+),
6 DIR1- O Dir. signal (-), 56 DIR3- O Dir. signal (-),
7 SVON1 O Multi-purpose signal, 57 SVON3 O Multi-purpose signal,
8 ERC1 O Dev. ctr, clr. signal, 58 ERC3 O Dev. ctr, clr. signal,
9 ALM1 I Alarm signal, 59 ALM3 I Alarm signal,
10 INP1 I In-position signal, 60 INP3 I In-position signal,
11 RDY1 I Multi-purpose signal, 61 RDY3 I Multi-purpose signal,
12 GND Ext. power ground 62 EXGND Ext. power ground
13 EA1+ I Encoder A-phase (+), 63 EA3+ I Encoder A-phase (+),
14 EA1- I Encoder A-phase (-), 64 EA3- I Encoder A-phase (-),
15 EB1+ I Encoder B-phase (+), 65 EB3+ I Encoder B-phase (+),
16 EB1- I Encoder B-phase (-), 66 EB3- I Encoder B-phase (-),
17 EZ1+ I Encoder Z-phase (+), 67 EZ3+ I Encoder Z-phase (+),
18 EZ1- I Encoder Z-phase (-), 68 EZ3- I Encoder Z-phase (-),
19 VPP O +5V power supply output 69 VPP O +5V power supply output
20 GND Ext. power ground 70 GND Ext. power ground
21 OUT2+ O Pulse signal (+), 71 OUT4+ O Pulse signal (+),
22 OUT2- O Pulse signal (-), 72 OUT4- O Pulse signal (-),
23 DIR2+ O Dir. signal (+), 73 DIR4+ O Dir. signal (+),
24 DIR2- O Dir. signal (-), 74 DIR4- O Dir. signal (-),
25 SVON2 O Multi-purpose signal, 75 SVON4 O Multi-purpose signal,
26 ERC2 O Dev. ctr, clr. signal, 76 ERC4 O Dev. ctr, clr. signal,
27 ALM2 I Alarm signal, 77 ALM4 I Alarm signal,
28 INP2 I In-position signal, 78 INP4 I In-position signal,
29 RDY2 I Multi-purpose signal, 79 RDY4 I Multi-purpose signal,
30 GND Ext. power ground 80 GND Ext. power ground
31 EA2+ I Encoder A-phase (+), 81 EA4+ I Encoder A-phase (+),
32 EA2- I Encoder A-phase (-), 82 EA4- I Encoder A-phase (-),
33 EB2+ I Encoder B-phase (+), 83 EB4+ I Encoder B-phase (+),
34 EB2- I Encoder B-phase (-), 84 EB4- I Encoder B-phase (-),
35 EZ2+ I Encoder Z-phase (+), 85 EZ4+ I Encoder Z-phase (+),
36 EZ2- I Encoder Z-phase (-), 86 EZ4- I Encoder Z-phase (-),
37 PEL1 I End limit signal (+), 87 PEL3 I End limit signal (+),
38 MEL1 I End limit signal (-), 88 MEL3 I End limit signal (-),
39 CMP1 O Position compare output 89 LTC3 I Position latch input
40 SD/PCS1 I Ramp-down signal 90 SD/PCS3 I Ramp-down signal
41 ORG1 I Origin signal, 91 ORG3 I Origin signal,
42 GND Ext. power ground 92 GND Ext. power ground
43 PEL2 I End limit signal (+), 93 PEL4 I End limit signal (+),
44 MEL2 I End limit signal (-), 94 MEL4 I End limit signal (-),
45 CMP2 O Position compare output 95 LTC4 I Position latch input,
46 SD/PCS2 I Ramp-down signal 96 SD/PCS4 I Ramp-down signal
47 ORG2 I Origin signal, 97 ORG4 I Origin signal,
48 GND Ext. power ground 98 GND Ext. power ground
49 GND Ext. power ground 99 E_24V Ext. power supply, +24V
50 GND Ext. power ground 100 E_24V Ext. power supply, +24V

18 • Installation

2.8 CN4 Pin Assignments: Simultaneous
Start/Stop (PCI-8164 Only)

CN4 is for simultaneous start/stop signals for multiple axes or multiple cards.

No. Name Function (Axis)
1 GND Bus power ground
2 STP Simultaneous stop signal input/output
3 STA Simultaneous start signal input/output
4 STP Simultaneous stop signal input/output
5 STA Simultaneous start signal input/output
6 +5V Bus power output, +5V

Note: +5V and GND pins are provided by the PCI Bus power.

2.9 CN5 Pin Assignment: TTL Output (PCI-8164
Only)

CN5 is for general-purposed TTL output signals.

Pin No. Name Function
1 DGND Digital ground
2 DGND Digital ground
3 ED0 Digital Output 0
4 ED1 Digital Output 1
5 ED2 Digital Output 2
6 ED3 Digital Output 3
7 ED4 Digital Output 4
8 ED5 Digital Output 5
9 VCC VCC +5V
10 N.C. Not used

Installation • 19

2.10 Jumper Setting for Pulse Output (PCI-8164
Only)

J1-J8 are used to set the type of pulse output signals (DIR and OUT). The
output signal type can either be differential line driver or open collector
output. Refer to section 3.1 for detail jumper settings. The default setting is
differential line driver mode.

2.11 Switch Setting for EL Logic

The S1 switch is used to set the EL limit switching type. The default
setting of the EL switch is ON, which is the “normally open” position
(or "A" contact type), while OFF is the “normally closed” position (or
“B” contact type).
For safety reasons, users must set a type, which will make the end-limit
active when it is broken or disconnected.

Note: MPC-8164 uses SW2 for this setting.

1
2
3

J5 J6 J7 J8

J1 J2 J3 J4

1
2
3

Line Driver
Open Collector

Line Driver
Open Collector

Axis
1 2 3 4

ON

OFF
S1

Select "A" Contact EL Switch (Normal Open)

Select "B" Contact EL Switch (Normal Close)

20 • Installation

2.12 CN3 Pin Assignment: General Purpose DI/DO
ports (MPC-8164 Only)

CN3 Pin No Signal Name CN3 Pin No Signal Name
1 DOCOM 2 DOCOM
3 DOCOM 4 DOCOM
5 DO0 6 DO1
7 DO2 8 DO3
9 DO4 10 DO5
11 DO6 12 DO7
13 -- 14 DICOM
15 DICOM 16 DICOM
17 DICOM 18 DI0
19 DI1 20 DI2
21 DI3 22 DI4
23 DI5 24 DI6
25 DI7 26 --

Signal Connections • 21

3

Signal Connections

Signal connections of all I/O’s are described in this chapter. Refer to the
contents of this chapter before wiring any cables between the 8164 and any
motor drivers.

This chapter contains the following sections:
Section 3.1 Pulse Output Signals OUT and DIR
Section 3.2 Encoder Feedback Signals EA, EB and EZ
Section 3.3 Origin Signal ORG
Section 3.4 End-Limit Signals PEL and MEL
Section 3.5 Ramping-down & PCS signals
Section 3.6 In-position signals INP
Section 3.7 Alarm signal ALM
Section 3.8 Deviation counter clear signal ERC
Section 3.9 general-purposed signals SVON
Section 3.10 General-purposed signal RDY
Section 3.11 Position compare output pin: CMP
Section 3.12 Position latch input pin: LTC
Section 3.13 Pulse input signals PA and PB
Section 3.14 Simultaneous start/stop signals STA and STP
Section 3.15 General-purposed TTL DIO
Section 3.16 Termination Board
Section 3.17 General-purposed DIO

22 • Signal Connections

3.1 Pulse Output Signals OUT and DIR

There are 4 axis pulse output signals on the 8164. For each axis, two pairs
of OUT and DIR signals are used to transmit the pulse train and to indicate
the direction. The OUT and DIR signals can also be programmed as CW
and CCW signal pairs. Refer to section 4.1.1 for details of the logical
characteristics of the OUT and DIR signals. In this section, the electrical
characteristics of the OUT and DIR signals are detailed. Each signal
consists of a pair of differential signals. For example, OUT2 consists of
OUT2+ and OUT2- signals. The following table shows all pulse output
signals on CN2.

CN2 Pin No. Signal Name Description Axis #
3 OUT1+ Pulse signals (+)
4 OUT1- Pulse signals (-)
5 DIR1+ Direction signal (+)
6 DIR1- Direction signal (-)
21 OUT2+ Pulse signals (+)
22 OUT2- Pulse signals (-)
23 DIR2+ Direction signal (+)
24 DIR2- Direction signal (-)
53 OUT3+ Pulse signals (+)
54 OUT3- Pulse signals (-)
55 DIR3+ Direction signal (+)
56 DIR3- Direction signal (-)
71 OUT4+ Pulse signals (+)
72 OUT4- Pulse signals (-)
73 DIR4+ Direction signal (+)
74 DIR4- Direction signal (-)

The output of the OUT or DIR signals can be configured by jumpers as
either differential line drivers or open collector output. Users can select the
output mode either by closing breaks between 1 and 2 or 2 and 3 of
jumpers J1-J8 as follows:

Signal Connections • 23

Output
Signal

For differential line driver
output, close breaks
between 1 and 2 of:

For open collector
output, close breaks
between 2 and 3 of:

OUT1- J1 J1
DIR1- J2 J2
OUT2- J3 J3
DIR2- J4 J4
OUT3- J5 J5
DIR3- J6 J6
OUT4- J7 J7
DIR4- J8 J8

The default setting of OUT and DIR is set to differential line driver mode.

The following wiring diagram is for OUT and DIR signals on the 4 axes.

NOTE: If the pulse output is set to open collector output mode, OUT- and
DIR- are used to transmit OUT signals. The sink current must not exceed
20mA on the OUT- and DIR- pins. The current may be provided by the
EX+5V power source, however, note that the maximum capacity of the
EX+5V source is 500mA.

VCC EX+5V

J1~J8

OUT
DIR

From PCL6045

OUT+, DIR+

OUT-, DIR-

EXGND

R

3

1 2

263
1

CN2Inside PCI-8164

24 • Signal Connections

3.2 Encoder Feedback Signals EA, EB and EZ

The encoder feedback signals include EA, EB, and EZ. Every axis has six
pins for three differential pairs of phase-A (EA), phase-B (EB), and index
(EZ) inputs. EA and EB are used for position counting, and EZ is used for
zero position indexing. Its relative signal names, pin numbers, and axis
numbers are shown in the following tables:

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
13 EA1+ 63 EA3+
14 EA1- 64 EA3-
15 EB1+ 65 EB3+
16 EB1- 66 EB3-
31 EA2+ 81 EA4+
32 EA2- 82 EA4-
33 EB2+ 83 EB4+
34 EB2- 84 EB4-

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #

17 EZ1+ 67 EZ3+
18 EZ1- 68 EZ3-
35 EZ2+ 85 EZ4+
36 EZ2- 86 EZ4-

The input circuit of the EA, EB, and EZ signals is shown as follows:

Please note that the voltage across each differential pair of encoder input
signals (EA+, EA-), (EB+, EB-), and (EZ+, EZ-) should be at least 3.5V.
Therefore, the output current must be observed when connecting to the
encoder feedback or motor driver feedback as not to over drive the source.
The differential signal pairs are converted to digital signals EA, EB, and EZ;
then feed to the PCL6045 ASIC.

Below are examples of connecting the input signals with an external circuit.
The input circuit can be connected to an encoder or motor driver if it is
equipped with: (1) a differential line driver or (2) an open collector output.

PCL6045

EA, EB
EZ

EA+, EB+, EZ+

EA-, EB-
EZ-

R

CN2Inside 8164

Signal Connections • 25

 Connection to Line Driver Output
To drive the 8164 encoder input, the driver output must provide at least
3.5V across the differential pairs with at least 6mA driving capacity. The
grounds of both sides must be tied together.

 Connection to Open Collector Output

To connect with an open collector output, an external power supply is
necessary. Some motor drivers can provide the power source. The
connection between the 8164, encoder, and the power supply is shown in
the diagram below. Note that an external current limiting resistor R is
necessary to protect the 8164 input circuit. The following table lists the
suggested resistor values according to the encoder power supply.

Encoder Power (VDD) External Resistor R
+5V 0Ω (None)
+12V 1.8kΩ
+24V 4.3kΩ

If = 6mA max.

For more operation information on the encoder feedback signals, refer to
section 4.4.

External Encoder / Driver
With line driver output PCI-8164

A,B phase signals
Index signal

EA+,EB+,EZ+ EZ+

EA-, EB-, EZ-

EXGND GND

VDD
GND

Motor Encoder / Driver
With Open Collector Output

External Power for Encoder PCI-8164

A, B phase signals
Index signal

EA+, EB+, EZ+

EA-, EB-, EZ-

R

26 • Signal Connections

3.3 Origin Signal ORG

The origin signals (ORG1~ORG4) are used as input signals for the origin of
the mechanism. The following table lists signal names, pin numbers, and
axis numbers:

CN2 Pin No Signal Name Axis #
41 ORG1
47 ORG2
91 ORG3
97 ORG4

The input circuit of the ORG signals is shown below. Usually, a limit switch
is used to indicate the origin on one axis. The specifications of the limit
switch should have contact capacity of +24V @ 6mA minimum. An internal
filter circuit is used to filter out any high frequency spikes, which may cause
errors in the operation.

When the motion controller is operated in the home return mode, the ORG
signal is used to inhibit the control output signals (OUT and DIR). For
detailed operations of the ORG signal, refer to section 4.3.3.

EX+24V

If=6mA Max.

Filter Circuit

To PCL6045
ORG

 4.7K

EXGND

Inside 8164 CN2

 Switch

Signal Connections • 27

3.4 End-Limit Signals PEL and MEL

There are two end-limit signals PEL and MEL for each axis. PEL indicates
the end limit signal is in the plus direction and MEL indicates the end limit
signal is in the minus direction. The signal names, pin numbers, and axis
numbers are shown in the table below:

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
37 PEL1 87 PEL3
38 MEL1 88 MEL3
43 PEL2 93 PEL4
44 MEL2 94 MEL4

A circuit diagram is shown in the diagram below. The external limit switch
should have a contact capacity of +24V @ 6mA minimum. Either ‘A-type’
(normal open) contact or ‘B-type’ (normal closed) contact switches can be
used. To set the type of switch, configure dipswitch S1/SW2. The 8164 is
defaulted with all bits of S1 set to ON (refer to section 2.10). For more
details on EL operation, refer to section 4.3.2.

EX+24V

If=6mA Max.

Filter Circuit

To PCL6045
PEL
MEL

 4.7K

EXGND

Inside 8164 CN2

 Switch

28 • Signal Connections

3.5 Ramping-down & PCS

There is a SD/PCS signal for each of the 4 axes. The signal names, pin
numbers, and axis numbers are shown in the table below:

CN2 Pin No Signal Name Axis #
40 SD1/PCS1
46 SD2/PCS2
90 SD3/PCS3
96 SD4/PCS4

A circuit diagram is shown below. Typically, the limit switch is used to
generate a slow-down signal to drive motors operating at slower speeds.
For more details on SD/PCS operation, refer to section 4.3.1.

EX+24V

If=6mA Max.

Filter Circuit

To PCL6045

SD

 4.7K

EXGND

Inside 8164 CN2

 Switch

Signal Connections • 29

3.6 In-position Signal INP

The in-position signal INP from a servo motor driver indicates its deviation
error. If there is no deviation error then the servo’s position indicates zero.
The signal names, pin numbers, and axis numbers are shown in the table
below:

CN2 Pin No Signal Name Axis #
10 INP1
28 INP2
60 INP3
78 INP4

The input circuit of the INP signals is shown in the diagram below:

The in-position signal is usually generated by the servomotor driver and is
ordinarily an open collector output signal. An external circuit must provide at
least 5mA current sink capabilities to drive the INP signal. For more details
of INP signal operations, refer to section 4.2.1.

EX+5V

If=12mA Max.
If=5mA Min. To PCL6045

INP

 R

Inside 8164 CN2

30 • Signal Connections

3.7 Alarm Signal ALM

The alarm signal ALM is used to indicate the alarm status from the servo
driver. The signal names, pin numbers, and axis numbers are shown in the
table below:

CN2 Pin No Signal Name Axis #
9 ALM1

27 ALM2
59 ALM3
77 ALM4

The input alarm circuit is shown below. The ALM signal usually is generated
by the servomotor driver and is ordinarily an open collector output signal.
An external circuit must provide at least 5mA current sink capabilities to
drive the ALM signal. For more details of ALM signal operations, refer to
section 4.2.2.

EX+5V

If=12mA Max.
If=5mA Min. To PCL6045

ALM

 R

Inside 8164 CN2

Signal Connections • 31

3.8 Deviation Counter Clear Signal ERC

The deviation counter clear signal (ERC) is active in the following 4
situations:

1. Home return is complete

2. End-limit switch is active

3. An alarm signal stops OUT and DIR signals

4. An emergency stop command is issued by software (operator)

The signal names, pin numbers, and axis numbers are shown in the table
below:

CN2 Pin No Signal Name Axis #
8 ERC1
26 ERC2
58 ERC3
76 ERC4

The ERC signal is used to clear the deviation counter of the servomotor
driver. The ERC output circuit is an open collector with a maximum of 35V
at 50mA driving capacity. For more details of ERC operation, refer to
section 4.2.3.

 35V @ 50mA Maximum

ERC

From PCL6045

EXGND

Inside 8164 CN2

32 • Signal Connections

3.9 General-purpose Signal SVON

The SVON signal can be used as a servomotor-on control or general
purpose output signal. The signal names, pin numbers, and its axis
numbers are shown in the following table:

CN2 Pin No Signal Name Axis #
7 SVON1
25 SVON2
57 SVON3
75 SVON4

The output circuit for the SVON signal is shown below:

3.10 General-purpose Signal RDY

The RDY signals can be used as motor driver ready input or general
purpose input signals. The signal names, pin numbers, and axis numbers
are shown in the following table:

CN2 Pin No Signal Name Axis #
11 RDY1
29 RDY2
61 RDY3
79 RDY4

The input circuit of RDY signal is shown in the following diagram:

35V @ 50mA Maximum
SVON

From PCL6045

EXGND

Inside 8164 CN2

EX+5V

If=12mA Max.
If=5mA Min. To PCL6045

RDY

R

Inside 8164 CN2

Signal Connections • 33

3.11 Position compare output pin: CMP

The 8164 provides 2 comparison output channels, CMP1 and CMP2 used
by the first 2 axes, & . The comparison output channel will generate a
pulse signal when the encoder counter reaches a pre-set value set by the
user.

The CMP channel is located on CN2. The signal names, pin numbers, and
axis numbers are shown below:

CN2 Pin No Signal Name Axis #
39 CMP1
45 CMP2

The following wiring diagram is of the CMP on the first 2 axes:

Note: CMP trigger type can be set as normal low (rising edge) or normal
high (falling edge). Default setting is normal high. Refer to function
_8164_set_trigger_type() in section 6.16 for details.

This CMP pin can be regarded as a TTL output.

In the above figure:

VPP: Isolated +5V

VCC: Computer +5V

R1: 470 Ohms

R2: 1K Ohms

VCC VPP

From
PLD

CMP1, CMP2

GND

R

CN2Inside 8164

R

34 • Signal Connections

3.12 Position latch input pin: LTC

The 8164 provides 2 position latch input channels, LTC3 and LTC4 used by
the last 2 axes, & . The LTC signal will trigger the counter-value-
capturing functions, which provides a precise position determination.

The LTC channel is on CN2. The signal names, pin numbers, and axis
numbers are shown in the following table:

CN2 Pin No Signal Name Axis #
89 LTC3
95 LTC4

The following wiring diagram is for the LTC of the last 2 axes:

LTC3
LTC4 VPP

To 6045

GND

R

CN2
Inside 8164

GN
D

R

Signal Connections • 35

3.13 Pulser Input Signals PA and PB (PCI-8164)

The PCI-8164 can accept input pulser signals through the pins of CN3 listed
below. The pulses behaves like an encoder. The signals generate the
positioning information, which guides the motor.

CN3 Pin
No

Signal
Name Axis # CN3 Pin

No
Signal
Name Axis #

11 PA1 5 PA3
10 PB1 4 PB3
9 PA2 3 PA4
8 PB2 2 PB4

PA and PB pins of CN3 are directly connected to PA and PB pins of the
PCL6045. The interface circuit is shown below.

If the signal voltage of the pulser is not +5V or if the pulser is distantly
placed, we recommended that a photocoupler or line driver be placed in
between. Note that the +5V and GND lines of CN3 are provided from the
PCI bus. Note that this source is not isolated.

3.14 Simultaneously Start/Stop Signals STA and
STP(PCI-8164 Only)

The PCI-8164 provides STA and STP signals, which enable simultaneous
start/stop of motions on multiple axes. The STA and STP signals are on
CN4.

The diagram below shows the onboard circuit. The STA and STP signals of
the four axes are tied together respectively.

VCC

PA, PB

PCL6045

PA, PB

36 • Signal Connections

The STP and STA signals are both input and output signals. To operate the
start and stop action simultaneously, both software control and external
control are needed. With software control, the signals can be generated
from any one of the PCL6045. Users can also use an external open
collector or switch to drive the STA/STP signals for simultaneous start/stop.

If there are two or more PCI-8164 cards, cascade the CN4 connectors of all
cards for simultaneous start/stop control on all concerned axes. In this case,
connect CN4 as below:

To allow an external signal to initiate the simultaneous start/stop connect a
7406 (open collector) or an equivalent circuit as shown below:

VCC

STP

PCL6045

STP
STA

VCC

4.7K

4.7K

CN4 Inside PCI-8164

STA

STP

CN4

PCI-8164 #1 PCI-8164 #2 PCI-8164 #3

CN4 CN4

STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

STOP 7406

STP

CN4

PCI-8164 #1 PCI-8164 #2 PCI-8164 #3

CN4 CN4

STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

7406 START

Signal Connections • 37

3.15 General Purpose TTL Output (PCI-8164 only)

The PCI-8164 provides 6 general purpose TTL digital outputs. The TTL
output is on CN5. The signal names, pin numbers, and axis numbers are
shown in the table below:

Pin No. Name Function
1 DGND Digital ground
2 DGND Digital ground
3 ED0 Digital Output 0
4 ED1 Digital Output 1
5 ED2 Digital Output 2
6 ED3 Digital Output 3
7 ED4 Digital Output 4
8 ED5 Digital Output 5
9 VCC VCC +5V

The following wiring diagram is for the LTC of the last 2 axes:

3.16 Termination Board

CN2 of the 8164 can be connected with a DIN-100S, including the ACL-
102100 cable (a 100-pin SCSI-II cable). The DIN-100S is a general purpose
100-pin SCSI-II DIN-socket. It has easy wiring screw terminals and an
easily installed DIN socket that can be mounted onto the DIN rails

We also provide DIN-814M termination boards for Mitsubishi JS2 Servo
Motor Drivers.

Inside PCI-8164

DGND

74LS373

ED0 ~ ED5

38 • Signal Connections

3.17 General Purpose DIO (MPC-8164 only)

There are 8 opto-isolated digital outputs and 8 open collector digital inputs
for general purpose use. Pin assignments are illustrated in the table below:

CN3 Pin No Signal Name CN3 Pin No Signal Name
1 DOCOM 2 DOCOM
3 DOCOM 4 DOCOM
5 DO0 6 DO1
7 DO2 8 DO3
9 DO4 10 DO5
11 DO6 12 DO7
13 -- 14 DICOM
15 DICOM 16 DICOM
17 DICOM 18 DI0
19 DI1 20 DI2
21 DI3 22 DI4
23 DI5 24 DI6
25 DI7 26 --

3.17.1 Isolated Input channels

3.17.2 Isolated Output channels

Signal Connections • 39

3.17.3 Example of input connection

40 • Signal Connections

3.17.4 Example of output connection

MPC-8164

MPC-8164

MPC-8164

Operation Theory • 41

4

Operation Theory

This chapter describes the detail operation of the 8164 card. Contents of
the following sections are as follows:
Section 4.1: The motion control modes
Section 4.2: The motor driver interface (INP, ERC, ALM, SVON, RDY)
Section 4.3: The limit switch interface and I/O status (SD/PCS, EL, ORG)
Section 4.4: The counters (EA, EB, EZ)
Section 4.5: Multiple 8164 cards operation.
Section 4.6: Change position or speed on the fly
Section 4.7: Position compare and latch
Section 4.8: Hardware backlash compensator
Section 4.9: Software limit function
Section 4.10: Interrupt control

4.1 Motion Control Modes

In this section, the pulse output signal configuration and the following
motion control modes are described.

• 4.1.1 Pulse command output
• 4.1.2 Velocity mode motion for one axis
• 4.1.3 Trapezoidal motion for one axis
• 4.1.4 S-Curve profile motion for one axis
• 4.1.5 Linear interpolation for 2-4 axes
• 4.1.6 Circular interpolation for 2 axes
• 4.1.7 Continuous motion
• 4.1.8 Home return mode for one axis
• 4.1.9 Manual pulse mode for one axis

42 • Operation Theory

4.1.1 Pulse Command Output
The 8164 uses pulse commands to control servo/stepper motors via the
drivers. A pulse command consists of two signals: OUT and DIR. There are
two command types: (1) single pulse output mode (OUT/DIR), and (2) dual
pulse output mode (CW/CCW type pulse output). The software function,
_8164_set_pls_outmode(), is used to program the pulse command mode.
The modes vs. signal type of OUT and DIR pins are listed in the table below:

Mode Output of OUT pin Output of DIR pin
Dual pulse output

(CW/CCW)
Pulse signal in plus
(or CW) direction

Pulse signal in minus
(or CCW) direction

Single pulse output
(OUT/DIR) Pulse signal Direction signal (level)

The interface characteristics of these signals can be differential line driver
or open collector output. Please refer to section 3.1 for the jumper setting
for different signal types.

Single Pulse Output Mode (OUT/DIR Mode)
In this mode, the OUT signal is for the command pulse (position or velocity)
chain. The numbers of OUT pulse represent the relative “distance” or
“position.” The frequency of the OUT pulse represents the command for
“speed” or “velocity.” The DIR signal represents direction command of
positive (+) or negative (-). This mode is most commonly used. The
diagrams below show the output waveform. It is possible to set the polarity
of the pulse chain.

pls_outmode = 0:

pls_outmode = 1:

OUT

DIR

(+)

(-)

OUT

DIR

(+)

(-)

Operation Theory • 43

pls_outmode = 2:

pls_outmode = 3:

Dual Pulse Output Mode (CW/CCW Mode)

In this mode, the waveform of the OUT and DIR pins represent CW
(clockwise) and CCW (counter clockwise) pulse output respectively.
Pulses output from the CW pin makes the motor move in positive
direction, whereas pulse output from the CCW pin makes the motor move
in negative direction. The following diagram shows the output waveform
of positive (+) commands and negative (-) commands.

pls_outmode = 4:

pls_outmode = 5:

Relative Function:
 _8164_set_pls_outmode(): Refer to section 6.4

OUT

DIR

(+)

(-)

OUT

DIR

(+)

(-)

(CW)

OUT
 DIR
 Negative direction

OUT
DIR
 Positive direction

OUT
 DIR
 Negative direction

OUT
DIR
 Positive direction

(CCW)

(CW)
(CCW)

(CW)
(CCW)

(CW)
(CCW)

44 • Operation Theory

4.1.2 Velocity mode motion
This mode is used to operate a one-axis motor with Velocity mode motion.
The output pulse accelerates from a starting velocity (StrVel) to a specified
maximum velocity (MaxVel). The _8164_tv_move() function is used for
constant linear acceleration while the _8164_sv_move() function is use for
acceleration according to the S-curve. The pulse output rate is kept at
maximum velocity until another velocity command is set or a stop command
is issued. The _8164_v_change() is used to change the speed during an
operation. Before this function is applied, be sure to call
_8164_fix_speed_range(). Please refer to section 4.6 for more detail
explanation. The _8164_sd_stop() function is used to decelerate the
motion until it stops. The _8164_emg_stop() function is used to
immediately stop the motion. These change or stop functions follow the
same velocity profile as its original move functions, tv_move or sv_move.
The velocity profile is shown as follows:

Note: The v_change and stop functions can also be applied to Preset
Mode (both trapezoidal, refer to 4.1.3, and S-curve Motion, refer to 4.1.4) or
Home Mode (refer to 4.1.8).

Relative Functions:
_8164_tv_move(), _8164_sv_move(), _8164_v_change(),
_8164_sd_stop(), _8164_emg_stop(), _8164_fix_speed_range(),
_8164_unfix_speed_range(): Refer to section 6.5

Operation Theory • 45

4.1.3 Trapezoidal Motion
This mode is used to move a singe axis motor to a specified position (or
distance) with a trapezoidal velocity profile. The single axis is controlled
from point to point. An absolute or relative motion can be performed. In
absolute mode, the target position is assigned. In relative mode, the target
displacement is assigned. In both cases, the acceleration and deceleration
can be different. The function _8164_motion_done() is used to check
whether the movement is complete.

The following diagram shows the trapezoidal profile:

There are 2 trapezoidal point-to-point functions supported by the 8164. In
the _8164_start_ta_move() function, the absolute target position must be
given in units of pulses. The physical length or angle of one movement is
dependent on the motor driver and mechanism (including the motor). Since
absolute move mode needs the information of current actual position, the
“External encoder feedback (EA, EB pins)” should be set in
_8164_set_feedback_src() function. The ratio between command pulses
and external feedback pulse input must be appropriately set by the
_8164_set_move_ratio() function.

In the _8164_start_tr_move() function, the relative displacement must be
given in units of pulses. Unsymmetrical trapezoidal velocity profile (Tacc is
not equal Tdec) can be specified with both _8164_start_ta_move() and
_8164_start_tr_move() functions.

The StrVel and MaxVel parameters are given in units of pulses per second
(PPS). The Tacc and Tdec parameters are in units of second to represent
accel./decel. time respectively. Users need to know the physical meaning of
“one pulse” to calculate the physical value of the relative velocity or
acceleration parameters. The following formula gives the basic relationship
between these parameters:

V
elocity (pps)

StrVel

Tacc Tdec

MaxVel

StrVel

Time (second)

46 • Operation Theory

MaxVel = StrVel + accel*Tacc;
StrVel = MaxVel + decel *Tdec;
Where accel/decel represents the acceleration/deceleration rate in units of
pps/sec^2. The area inside the trapezoidal profile represents the moving
distance.

Units of velocity setting are pulses per second (PPS). Usually, units of
velocity of the manual of motor or driver are in rounds per minute (RPM). A
simple conversion is necessary to match between these two units. Here we
use an example to illustrate the conversion:

For example:

A servomotor with an AB phase encoder is used in a X-Y table. The
resolution of encoder is 2000 counts per phase. The maximum rotating
speed of motor is designed to be 3600 RPM. What is the maximum pulse
command output frequency that you have to set on 8164?

Answer: MaxVel = 3600/60*2000*4 = 480000 PPS

Multiplying by 4 is necessary because there are four states per AB phase
(See Figures in Section 4.4).

Usually, the axes need to set the move ratio if their mechanical resolution is
different from the resolution of command pulse. For example, if an
incremental encoder is mounted on the working table to measure the actual
position of moving part. A servomotor is used to drive the moving part
through a gear mechanism. The gear mechanism is used to convert the
rotating motion of the motor into linear motion (see the following diagram).
If the resolution of the motor is 8000 pulses/round, then the resolution of the
gear mechanism is 100 mm/round (i.e., part moves 100 mm if the motor
turns one round). Then, the resolution of the command pulse will be 80
pulses/mm. If the resolution of the encoder mounting on the table is 200
pulses/mm, then users have to set the move ratio to 200/80=2.5 using the
function _8164_set_move_ratio (axis, 2.5).

If this ratio is not set before issuing the start moving command, it will cause
problems when running in “Absolute Mode” because the 8164 won’t
recognize the actual absolute position during motion.

Moving part

Motor Gear

Encoder

Table

Operation Theory • 47

Relative Functions:
_8164_start_ta_move(), _8164_start_tr_move(): Refer to section 6.6

_8164_motion_done(): Refer to section 6.11

_8164_set_feedback_src(): Refer to section 6.4

_8164_set_move_ratio(): Refer to section 6.6

4.1.4 S-curve Profile Motion
This mode is used to move a single-axis motor to a specified position (or
distance) with a S-curve velocity profile. S-curve acceleration profiles are
useful for both stepper and servomotors. The smooth transitions between
the start of the acceleration ramp and transition to constant velocity produce
less wear and tear than a trapezoidal profile motion. The smoother
performance increases the life of the motor and the mechanics of the
system.

There are several parameters that need to be set in order to make a S-
curve move. They are:

 Pos: target position in absolute mode, in units of pulses

 Dist: moving distance in relative mode, in units of pulses

StrVel: start velocity, in units of PPS

 MaxVel: maximum velocity, in units of PPS

Tacc: time for acceleration (StrVel MaxVel), in units of seconds

Tdec: time for deceleration (MaxVel StrVel), in units of seconds

VSacc: S-curve region during acceleration, in units of PPS

 VSdec: S-curve region during deceleration, in units of PPS

Tacc Tdec

VSacc

VSacc VSdec

VSdec

Time
(Second)

Velocity
(PPS)

StrVel

MaxVel

48 • Operation Theory

Normally, the accel/decel period consists of three regions, two
VSacc/VSdec curves and one linear. During VSacc/VSdec, the jerk (second
derivative of velocity) is constant, and, during the linear region, the
acceleration (first derivative of velocity) is constant. In the first constant jerk
region during acceleration, the velocity goes from StrVel to (StrVel + VSacc).
In the second constant jerk region during acceleration, the velocity goes
from (MaxVel – StrVel) to MaxVel. Between them, the linear region
accelerates velocity from (StrVel + VSacc) to (MaxVel - VSacc) constantly.
The deceleration period is similar in fashion.

Special case:

If user wants to disable the linear region, the VSacc/VSdec must be
assigned “0” rather than “0.5” (MaxVel-StrVel).

Remember that the VSacc/VSdec is in units of PPS and it should always
keep in the range of [0 to (MaxVel - Strvel)/2], where “0” means no linear
region.

The S-curve profile motion functions are designed to always produce
smooth motion. If the time for acceleration parameters combined with the
final position don’t allow an axis to reach the maximum velocity (i.e. the
moving distance is too small to reach MaxVel), then the maximum velocity
is automatically lowered (see the following Figure).

The rule is to lower the value of MaxVel and the Tacc, Tdec, VSacc, VSdec
automatically, and keep StrVel, acceleration, and jerk unchanged. This is
also applicable to Trapezoidal profile motion.

Relative Functions:
_8164_start_sr_move(),_8164_start_sa_move(): Refer to section 6.6
_8164_motion_done(): Refer to section 6.11
_8164_set_feedback_src(): Refer to section 6.4
_8164_set_move_ratio(): Refer to section 6.6

V
el

oc
ity

 (p
ps

)

Time (sec)

Operation Theory • 49

The Following table shows the differences between all single axis motion
functions, including preset mode (both trapezoidal and S-curve motion)
and constant velocity mode.

Velocity Profile
Trapezoidal S-Curve Relative Absolute

_8164_tv_move ----------- -----------
_8164_sv_move ----------- -----------
_8164_v_change ----------- -----------
_8164_sd_stop ----------- -----------
_8164_emg_stop() ----------- ------------ ----------- -----------
_8164_start_ta_move
_8164_start_tr_move
_8164_start_sr_move
_8164_start_sa_move

4.1.5 Linear interpolation for 2-4 axes
In this mode, any 2 of the 4, 3 of the 4, or all 4 axes may be chosen to
perform linear interpolation. “Interpolation between multi-axes” means these
axes start simultaneously, and reach their ending points at the same time.
Linear means the ratio of speed of every axis is a constant value.

Note that you cannot use 2 groups of 2 axes for linear interpolation on a
single card at the same time. You can however, use one 2-axis linear and
one 2-axis circular interpolation at the same time. If you want to stop an
interpolation group, the function _8164_sd_stop() or _8164_emg_stop() can
be used.

2 axes linear interpolation
As in the diagram below, 2-axis linear interpolation means to move the XY
position (or any 2 of the 4 axis) from P0 to P1. The 2 axes start and stop
simultaneously, and the path is a straight line.

The speed ratio along X-axis and Y-axis is (ΔX: ∆Y), respectively, and the
vector speed is:

P0(X0,Y0)

P1(X1,Y1)

X-Axis

Y
-A

xi
s

ΔX

ΔY

22)()(
t
Y

t
X

t
P

∆
∆

+
∆
∆

=
∆
∆

50 • Operation Theory

When calling 2-axis linear interpolation functions, the vector speed needs
to define the start velocity, StrVel, and maximum velocity, MaxVel. Both
trapezoidal and S-curve profiles are available.

Example:

_8164_start_tr_move_xy(0, 30000.0, 40000.0, 1000.0, 5000.0, 0.1, 0.2) will
cause the XY axes (axes 0 & 1) of Card 0 to perform a linear interpolation
movement, in which:

ΔX = 30000 pulses; ΔY = 40000 pulses

Start vector speed=1000pps, X speed=600pps, Y speed = 800pps

Max. vector speed =5000pps, X speed=3000pps, Y speed = 4000pps

Acceleration time = 0.1sec; Deceleration time = 0.2sec

There are two groups of functions that provide 2-axis linear interpolation.
The first group divides the 4 axes into XY (axis 0 & axis 1) and ZU (axis 2 &
axis 3). By calling these functions, the target axes are already assigned.

_8164_start_tr_move_xy(), _8164_start_tr_move_zu(),

_8164_start_ta_move_xy(), _8164_start_ta_move_zu(),

_8164_start_sr_move_xy(), _8164_start_sr_move_zu(),

_8164_start_sa_move_xy(), _8164_start_sa_move_zu()

(Refer to section 6.7)

The second group allows user to freely assign the 2 target axes.

_8164_start_tr_line2(), _8164_start_sr_line2(),

_8164_start_ta_line2(), _8164_start_sa_line2()

(Refer to section 6.7)

The characters “t”, “s”, “r”, and “a” after _8164_start mean:

t – Trapezoidal profile

s – S-Curve profile

r – Relative motion

a – Absolute motion

Operation Theory • 51

3-axis linear interpolation
Any 3 of the 4 axes of the 8164 may perform 3-axis linear interpolation. As
shown the figure below, 3-axis linear interpolation means to move the XYZ
(if axes 0, 1, 2 are selected and assigned to be X, Y, Z respectively)
position from P0 to P1, starting and stopping simultaneously. The path is a
straight line in space.

The speed ratio along X-axis, Y-axis, and Z-axis is (ΔX: ΔY: ΔZ),
respectively, and the vector speed is:

When calling 3-axis linear interpolation functions, the vector speed is
needed to define the start velocity, StrVel, and maximum velocity, MaxVel.
Both trapezoidal and S-curve profiles are available.

For example:

_8164_start_tr_line3(….,1000.0 /*ΔX */ , 2000.0/*ΔY */, 3000.0 /*DistZ*/,
100.0 /*StrVel*/, 5000.0 /* MaxVel*/, 0.1/*sec*/, 0.2 /*sec*/)

ΔX = 1000 pulse; ΔY = 2000 pulse; ΔZ = 3000 pulse

Start vector speed=100pps, X speed = 100/ 14 = 26.7pps

Y speed = 2*100/ 14 = 53.3pps

Z speed = 3*100/ 14 = 80.1pps

P0(X0,Y0,Z0)

P1(X1,Y1,Z1)

X-Axis

Y
-A

xi
s

ΔX

ΔY

Z-Axis

ΔZ

222)()()(
t
Z

t
Y

t
X

t
P

∆
∆

+
∆
∆

+
∆
∆

=
∆
∆

52 • Operation Theory

Max. vector speed =5000pps, X speed= 5000/ 14 = 1336pps

Y speed = 2*5000/ 14 = 2672pps

Z speed = 3*5000/ 14 = 4008pps

The following functions are used for 3-axis linear interpolation:
_8164_start_tr_line3(), _8164_start_sr_line3()

_8164_start_ta_line3() , _8164_start_sa_line3()

(Refer to section 6.7)

The characters “t”, “s”, “r”, and “a” after _8164_start mean:

t – Trapezoidal profile

s – S-Curve profile

r – Relative motion

a – Absolute motion

4-axis linear interpolation
With 4-axis linear interpolation, the speed ratio along X-axis, Y-axis, Z-axis
and U-axis is (ΔX: ΔY: ΔZ: ΔU), respectively, and the vector speed is:

The following functions are used for 4-axis linear interpolation:

_8164_start_tr_line4(), _8164_start_sr_line4()

_8164_start_ta_line4(),_8164_start_sa_line4()

(Refer to section 6.7)

The characters “t”, “s”, “r”, and “a” after _8164_start mean:

t – Trapezoidal profile

s – S-Curve profile

r – Relative motion

a – Absolute motion

2222)()()()(
t
U

t
Z

t
Y

t
X

t
P

∆
∆

+
∆
∆

+
∆
∆

+
∆
∆

=
∆
∆

Operation Theory • 53

4.1.6 Circular interpolation for 2 axes
Any 2 of the 4 axes of the 8164 can perform circular interpolation. In the
example below, circular interpolation means XY (if axes 0, 1 are selected
and assigned to be X, Y respectively) axes simultaneously start from initial
point, (0,0) and stop at end point,(1800,600). The path between them is an
arc, and the MaxVel is the tangential speed.

Example:

_8164_start_a_arc_xy(0 /*card No*/, 1000,0 /*center X*/, 0 /*center Y*/,
1800.0 /* End X */, 600.0 /*End Y */ ,1000.0 /* MaxVel */)

To specify a circular interpolation path, the following parameters must be
clearly defined:

Center point: The coordinate of the center of arc (In absolute mode) or
 The off_set distance to the center of arc (In relative mode)

End point: The coordinate of end point of arc (In absolute mode) or
 The off_set distance to center of arc (In relative mode)

Direction: The moving direction, either CW or CCW.

It is not necessary to set radius or angle of arc, since the information above
gives enough constrains. The arc motion is stopped when either of the 2
axes reached end point.

There are two groups of functions that provide 2-axis circular interpolation.
The first group divides the 4 axes into XY (axis 0 & axis 1) and ZU (axis 2 &
axis 3). By calling these functions, the target axes are already assigned.

X

Y

(0,0) Center
(1000,0)

(1800,600)

54 • Operation Theory

_8164_start_r_arc_xy(), _8164_start_r_ arc _zu(),

_8164_start_a_ arc _xy(), _8164_start_a_ arc _zu(),

(Refer to section 6.8)

The second group allows user to freely assign any targeted 2 axes.

_8164_start_r_arc2(),_8164_start_a_arc2(): Refer to section 6.8

4.1.7 Circular interpolation with Acc/Dec time
In section 4.1.6, the circular interpolation functions do not support
acceleration and deceleration parameters; therefore, they cannot perform a
T or S curve speed profile during operation. However, sometimes the need
for an Acc/Dec time speed profile will help a machine to make more
accurate circular interpolation. The 8164 has another group of circular
interpolation functions to perform this type of interpolation, but requires the
use of Axis3 as an aided axis, which means that Axis3 cannot be used for
other purposes while running these functions. For example, to perform a
circular interpolation with a T-curve speed profile, the function
_8164_start_tr_arc_xyu() is used. This function will used Axis0 and Axis1,
and also Axis3 (Axis0=x, Axis1=y, Axis2=z, Axis3=u). For the full lists of
functions, refer to section 6.8.

To check if the board supports these functions use the _8164_version_info()
function. If hardware information for the card returns a value with the 4th
digit greater then 0, for example '1003', users can use this group of circular
interpolation to perform S or T-curve speed profiles. If the hardware version
returns a value with the 4th digit being 0, then that board does not support
these functions.

Time

S
peed (pps)

Tsacc

Tlacc

Tsacc

Operation Theory • 55

4.1.8 Relationship between Velocity and Acceleration Time.
The maximum velocity parameter of a motion function will eventually have a
minimum acceleration value. This means that there is a range for
acceleration time over one velocity value. Under this relationship, to obtain
a small acceleration time, a higher maximum velocity value to match the
smaller acceleration time is required. Function _8164_fix_speed_range()
will provide such operation. This function will raise the maximum velocity
value, which in turn results in a smaller acceleration time. Note it does not
affect the actual end velocity. For example, to have a 1ms acceleration time
from a velocity of 0 to 5000(pps), the function can be inserted before the
motion function as shown.

_8164_fix_speed_range(AxisNo,OverVelocity);

_8164_start_tr_move(AxisNo,5000,0,5000,0.001,0.001);

How do users decide an optimum value for “OverVelocity” in the
_8164_fix_speed_range() function? The _8164_verify_speed() function is
provided to calculate such value. The inputs to this function are the start
velocity, maximum velocity and over velocity values. The output value will
be the minimum and maximum values of the acceleration time.

For example, if the original acceleration range for the command is:

 _8164_start_tr_move(AxisNo,5000,0,5000,0.001,0.001),

then use the following function:

_8164_verify_speed(0,5000,&minAccT, &maxAccT,5000);

MiniT1
MiniT2
MiniT3
MiniT4

MaxV1

MaxV2

MaxV3

MaxV4

Velocity

56 • Operation Theory

The value miniAccT will be 0.0267sec and maxAccT will be 873.587sec.
This minimum acceleration time does not meet the requirement of 1mS. To
achieve such a low acceleration time the over speed value must be used.

By changing the OverVelocity value to 140000,

_8164_verify_speed(0,5000,&minAccT, &maxAccT,140000);

The value miniAccT will be 0.000948sec and maxAccT will be 31.08sec.
This minimum acceleration time meets the requirements. So, the motion
command can be changed to:

_8164_fix_speed_range(AxisNo,140000);

_8164_start_tr_move(AxisNo,5000,0,5000,0.001,0.001);

Note1: The return value of _8164_verify_speed() is the minimum velocity of
motion command, it does not always equal to your start velocity setting. In
the above example, it will be 3pps more than the 0pps setting.

Note2: To disable the fix speed function _8164_fix_speed_range() use
_8164_unfix_speed_range()

[Note3] Minimize the use of the OverVelocity operation. the more it is used,
the coarser the speed interval is.

Target T

MiniT2

MaxV1

MaxV2

Velocity

MiniT1

Operation Theory • 57

Example:

User’s Desired Profile: (MaxV2, Target T) is not possible under MaxV2
according to the (MaxV, MiniT) relationship. So one must change the (MaxV,
MiniT) relationship to a higher value, (MaxV1, MiniT1). Finally, the command
would be:

_8164_fix_speed_range(AxisNo, MaxV1);

_8164_start_tr_move(AxisNo,Distance, 0 , MaxV2 , Target T, Target T);

Relative Functions:

_8164_fix_speed_range(),
_8164_unfix_speed_range(),_8164_verify_speed()

Refer to section 6.5

4.1.9 Continuous motion
The 8164 allows users to perform continuous motion. Both single axis
movement (section 4.1.3: Trapezoidal, section 4.1.4: S-Curve) and multi-
axis interpolation (4.1.5: linear interpolation, 4.1.6: circular interpolation) can
be extended to be continuous motion.

For example, if a user calls the following function to perform a single axis
preset motion:

_8164_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0)

It will cause the axis “0” to move to position “50000.0.” Before the axis
arrives, the user can call a second pressed motion:

 _8164_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2)

The second function call won’t affect the first one. Actually, it will be
executed and written into the pre-register of the 8164. After the first move is
finished, the 8164 will continue with the second move according to the pre-
register value. So, the time interval between these two moves can be seen
as a continuous move and pulses will be continuously be generated at the
“50000.0” position.

58 • Operation Theory

The theory of continuous motion is described below:

Theory of continuous motion
The following diagram shows the register data flow of the 8164.

Step 0: All Registers and Pre-Registers are cleared.

Step 1: The first motion is executed and the CPU writes corresponding
values into Pre-Register2.

 _8164_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0)

Step 2: Since Pre-Register1 & Register are empty, the data in pre-register
2 is automatically moved to the Register and executed immediately
by the ASIC.

Step 3: The second function is called. The CPU writes the corresponding
values into pre-register2.

_8164_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2)

Step 4: Since Pre-register1 is empty; the data in pre-register 2 is
automatically moved to Pre-Rregister1 and waits to be executed.

Step 5: Now the user can execute a 3rd function, and it will be stored to
Pre-register2.

Running
Register

Pre-reg
1

Pre-reg
2

Pre-register empty
interrupt

Host
Program

Next Command
loading

Operation Theory • 59

Step 6: When the first function is completed, the Register becomes empty,
and data in pre-register1 is allowed to move to Register and is
executed immediately by the ASIC. Data in Pre-Register2 is then
moved to Pre-Register1.

Step 7: The ASIC will inform the CPU generating an interrupt that a motion
is completed. Users can then write the 4th motion command into
Pre-Register2.

Procedures for continuous motion
The following procedures are to help user making continuous motion.

Step 1: (If Under DOS)

Enable the interrupt service using _8164_int_contol()

(If Under Windows)

Enable the interrupt service using _8164_int_contol() and
_8164_int_enable().

Step 2: Set bit “2” of INT factor to be “True” using _8164_set_int_factor()/

Step 3: Set the “conti_logic” to be “1” by: _8164_set_continuous_move()
(note: if all motions are in relative mode, this function can be
ignored).

Step 4: Call the first three motion functions.

Step 5: Wait for INT (under DOS) or EVENT (under Windows) of pre-
register empty.

Step 6: Call the 4th motion function.

Step 7: Wait for INT (under DOS) or EVENT (under Windows) generated if
any pre-register is empty.

Step 8: Repeat steps 6 and 7 until all functions are called.

Step n: Wait for all motions to complete.

(Note: Another method to determine a motion-completed action is by polling.
User may constantly check the buffer status using the
_8164_check_continuous_buffer() function)

60 • Operation Theory

Restrictions of continuous motion
The statements below are restrictions and suggestions for continuous
motion:

1. When the Pre-Registers are full, users may not execute any more
motion functions. Otherwise, the new function one will overwrite the
existing function in Pre-Register2.

2. To get a continuity of velocity between 2 motions, the previous end
velocity of and starting velocity of the next must be the same. There are
several methods to achieve this. The easiest way is to set the
deceleration/acceleration time to ‘0.’

For example:

1st motion: _8164_start_tr_move_XY(0,1000,0,0,5000,0.2, 0.0)

(Start a relative 2-axis linear interpolation, x distance =1000, y distance = 0,
start vel = 0, max vel = 5000, Tacc = 0.2, Tdec = 0)

2nd motion: _8164_start_r_arc_xy(0,0,500,500,500,1,5000);

(Start a relative 2-axis circular interpolation, center x distance = 0, center y
distance = 500, End x distance = 500, end y distance = 500. max vel = 5000.
It is a quarter ccw circle, with velocity = 5000)

3rd motion: _8164_start_tr_move_XY(0,0,1000,0,5000,0.0, 0.2)

(Start a relative 2-axis linear interpolation, x distance=0, y distance = 1000,
start vel = 0, max vel = 5000, Tacc = 0.0,Tdec = 0)

Dist = 1000

Dist = 1000

R = 500 (1)
(2)

(3)

Operation Theory • 61

Explanation of example:

When these three motions were executed sequentially, the 1st occupies the
Register and is executed immediately; the 2nd occupies Pre-Register1 and
waits for completion of the 1st motion. The 3rd occupies Pre-Register2 and
waits for completion of the 2nd motion. Since the 1st motion has a ‘0’
deceleration time and the 2nd motion is an arc of constant velocity, which is
the same as the max_vel of the 1st, the 8164 will output a constant
frequency at intersections between them.

1. Continuous motion between different axes is meaningless. Different
axes have their own register and pre-register system.

2. Continuous motion between different numbers of axes is not allowed.
For example: _8164_start_tr_move() can not be followed by
_8164_start_ta_move_XY() nor vice versa.

3. It is possible to perform a 3-axis or 4-axis continuous linear
interpolation, but speed continuity is impossible to achieve.

4. If any absolute mode is used during continuous motion, make sure that
_8164_reset_target_pos() is executed at least once after home move.
Refer to 4.1.8: Home return mode for more details

Examples of continuous motion
The following are examples of continuous motion:
1. Single axes continuous motion: Changing velocity at preset points.

This example demonstrates how to use the continuous motion function to
achieve velocity changing at pre-set points. The 1st motion (ta) moves the
axis to point A, with Tdec =0, and then the 2nd continues immediately. The
start velocity of (2) is the same with max velocity of (1), so that the velocity
continuity exists at A. At point B. the Tacc of (3) is set to be 0, so the
velocity continuity is also continued.

Time

Velocity

Tdec=0 Tacc = 0

(1)
(2)

(3)
A. B.

62 • Operation Theory

2. 2-axis continuous interpolation:

This example demonstrates how to use continuous motion function to
achieve 2-axis continuous interpolation. In this application, the velocity
continuity is the key concern. Refer to the previous example.

The functions related to continuous motion are listed below:

_8164_set_continuous_move(), _8164_check_continuous_buffer()

Refer to section 6.17.

4.1.10 Home Return Mode
In this mode, the 8164 is allowed to continuously output pulses until the
condition to complete the home return is satisfied after writing the command
_8164_home_move(). There are 13 home moving modes provided by the
8164. The “home_mode” of function _8164_set_home_config() is used
to select whichever mode is preferred.
After completion of home move, it is necessary to keep in mind that all
related position information should be reset to be “0.” The 8164 has 4
counters and 1 software-maintained position recorder. They are:

Command position counter: counts the number of pulse outputs

Feedback position counter: counts the number of pulse inputs

Position error counter: counts the error between command and feedback
pulse numbers.

General-Purposed counter: can be configured as pulse output, feedback
pulse, manual pulse, or CLK/2.

Target position recorder: records the target position.

Refer to section 4.4 for a more detailed explanation about position counters.

Operation Theory • 63

After home move is complete, the first four counters will be cleared to “0”
automatically, however, the target position recorder will not. Because it is
software maintained, it is necessary to manually set the target position to
“0” by calling the function _8164_reset_target_pos().

The following figures show the various home modes and the reset points,
when the counter is cleared to “0.”

home_mode=0: ORG Slow down Stop
 When SD (Ramp-down signal) is inactive.

 When SD (Ramp-down signal) is active.

home_mode=1: ORG Slow down Stop at end of ORG

ORG

EL

Case 1

Case 2

Case 3
Reset

ORG

EL

Case 1

Case 2

Case 3

SD
Reset

ORG

EL

Case 1

Case 2

Case 3

Reset

64 • Operation Theory

home_mode=2: ORG Slow down Stop on EZ signal

home_mode=3: ORG EZ - Slow down Stop

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 2)

Reset

Reset

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 2)

Reset Reset

Operation Theory • 65

home_mode=4: ORG Slow down Go back at FA speed EZ
Stop

home_mode=5: ORG Slow down Go back Accelerate to MaxVel
 EZ Slow down Stop

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 0)

FA

FA

Reset

Reset

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZD = 1)

(EZD = 0)
Reset

Reset

66 • Operation Theory

home_mode=6: EL only

home_mode=7: EL Go back Stop on EZ signal

home_mode=8: EL Go back Accelerate to MaxVel EZ Slow
down Stop

EL

Case 1

Reset

EL

Case 1

EZ

FA

(EZ_Count = 1)

Reset

EL

Case 1

EZ

(EZD = 1)

Reset

Operation Theory • 67

home_mode=9: ORG Slow down Go back Stop at beginning
edge of ORG

home_mode=10: ORG EZ Slow down Go back Stop at
beginning edge of EZ

ORG

EL

Case 1

Case 2

Case 3

Reset

ORG

EL

Case 1

Case 3

Case 4

EZ

(EZ_Count = 1)

Reset

68 • Operation Theory

home_mode=11: ORG Slow down Go back (backward)
Accelerate to MaxVel EZ Slow down Go back again (forward)
Stop at beginning edge of EZ

home_mode=12: EL Stop Go back (backward) Accelerate to
MaxVel EZ Slow down Go back again (forward) Stop at
beginning edge of EZ

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 0)

Reset

Reset

EL

Case 1

EZ

(EZ_Count = 1)

Reset

Operation Theory • 69

• Home Search Example (Home mode=1)

FL=Start Velocity
FH=Max Velocity (the sign stands for direction)
FA=Search Speed (half of the FH)

Moving Steps

1. Home searching start (-)

2. –EL touches, slow down and reverse moving (+)

3. ORG touches, slow down

4. Escape from ORG according to ORG offset

5. Start searching again (-)

6. ORG touches, slow down then using searching speed to escape ORG
(+)

7. After escape ORG, search ORG with search speed again (-)

Relative Functions:
_8164_set_home_config(), _8164_home_move(), _8164_home_search(),
Refer to section 6.9.

ORG Offset

ORG +EL -EL

Start/Direction (-)

70 • Operation Theory

4.1.11 Manual Pulse Mode (PCI-8164 Only)
For manual operation of a device, you may use a manual pulse such as a
rotary encoder. The PCI-8164 can receive input signals from a pulser and
output its corresponding pulses from the OUT and DIR pins, thereby
allowing a simplified external circuit.

This mode is effective when the _8164_pulser_vmove(),
_8164_pulser_pmove(), or _8164_pulser_home_move() command has
been called. To terminate the command use the _8164_sd_stop()
or_8164_emg_stop() command.

The PCI-8164 receives positive and negative pulses (CW/CCW) or 90
degrees phase difference signals (AB phase) from the pulser at the PA and
PB pins. To set the input signal modes of the pulser, use the
_8164_set_pulser_iptmode() function. The 90 ∘ phase difference in
signals can be set by a multiplication of 1, 2, or 4. If the AB phase input
mode is selected, PA and PB signals should have a 90°-phase shift, and
the position counter increases when the PA signal is leading the PB signal
by 90°.

Relative Functions:
_8164_pulser_vmove(), _8164_pulser_pmove(),
_8164_pulser_home_move(), _8164_set_pulser_iptmode()

Refer to section 6.10

4.2 The motor driver interface

The 8164 provides the INP, ALM, ERC, SVON, and RDY signals for a
servomotor driver control interface. The INP and ALM are used for feedback
of the servo driver status, ERC is used to reset the servo driver’s deviation
counter under special conditions, VON is a general purpose output signal,
and RDY is a general purpose input signal. The meaning of “general
purpose” is that the processing of the signal is not a build-in procedure of
the hardware. The hardware processes INP, ALM, and ERC signals
according to pre-defined rules. For example, when receiving ALM signal,
the 8164 stops or decelerate to stop output pulses automatically. However,
SVON and RDY are not the case, they actually act like common I/O’s.

Operation Theory • 71

4.2.1 INP
The processing of the INP signal is a hardware build-in procedure, and it is
designed to cooperate with the in-position signal of the servomotor driver.

Usually, servomotor drivers with a pulse train input has a deviation (position
error) counter to detect the deviations between the input pulse command
and feedback counter. The driver controls the motion of the servomotor to
minimize the deviation until it becomes 0. Theoretically, the servomotor
operates with some time delay from the command pulses. Likewise, when
the pulse generator stops outputting pulses, the servomotor does not stop
immediately but keeps running until the deviation counter is zero. Only after
stopping does the servo driver send out the in-position signal (INP) to the
pulse generator to indicate the motor has stopped running.

Normally the 8164 stops outputting pulses upon completion of outputting
designated pulses. However, by setting parameter inp_enable with the
_8164_set_inp() function, the delay in completion of the motion to the time
the INP signal is issued can be adjusted, i.e., the motor arrives at the target
position. Status of _8164_motion_done() and INT signal are also delayed.
That is, when performing under position control mode, the completion of
_8164_start_ta_move(), _8164_start_sr_move(), etc, is delayed until the
INP signal is issued.

The in-position function can be enabled or disabled, and the input logic
polarity is also programmable by the “inp_logic” parameter of
_8164_set_inp(). The INP signal status can be monitored by software with
the function: _8164_get_io_status().

Relative Functions:
_8164_set_inp(): Refer to section 6.12

_8164_get_io_status(): Refer to section 6.13

_8164_motion_done(): Refer to section 6.11

72 • Operation Theory

4.2.2 ALM
The processing of the ALM signal is a hardware build-in procedure, and it is
designed to interact with the alarm signal of the servomotor driver.

The ALM signal is an output signal from servomotor driver. Usually, it is
designated to indicate when something is wrong with the driver or motor.

The ALM pin receives the alarm signal output from the servo driver. The
signal immediately stops the 8164 from generating any further pulses or
stops it after deceleration. If the ALM signal is in the ON status at the start
of an operation, the 8164 will generate the INT signal and thus not generate
any command pulses. The ALM signal may be a pulse signal with a
minimum time width of 5 microseconds.

Setting the parameters “alm_logic” and “alm_mode” of the _8164_set_alm
function can alter the input logic of the ALM. Whether or not the 8164 is
generating pulses, the ALM signal allows the generation of the INT signal.
The ALM status can be monitored by using the software function:
_8164_get_io_status(). The ALM signal can generate an IRQ, if the
interrupt service is enabled. Refer to section 4.7.

Relative Functions:
_8164_set_alm(): Refer to section 6.12

_8164_get_io_status(): Refer to section 6.13

Operation Theory • 73

4.2.3 ERC
The ERC signal is an output from the 8164. The processing of the ERC
signal is a hardware build-in procedure, and it is designed to interact with
the deviation counter clear signal of the servomotor driver.

The deviation counter clear signal is inserted in the following 4 situations:

1. Home return is complete

2. The end-limit switch is active

3. An alarm signal stops the OUT and DIR signals

4. The software operator issues an emergency stop command

Since the servomotor operates with some delay from the pulse generated
from the 8164, it continues to move until the deviation counter of the driver
is zero even if the 8164 has stopped outputting pulses because of the ±EL
signal or the completion of home return. The ERC signal allows immediate
stopping of the servomotor by resetting the deviation counter to zero. The
ERC signal is outputted as a one-shot signal. The pulse width is of time
length defined by the function call _8164_set_erc(). The ERC signal will
automatically be generated when the ±EL and ALM signal are turned on
and the servomotor is stopped immediately.

Relative Functions:
_8164_set_erc(): Refer to section 6.12

4.2.4 SVON and RDY
All axes of the 8164 are equipped with SVON and RDY signals, which are
general purpose output and input channels, respectively. Usually, the
SVON is used to interact with the servomotor drivers as a Servo ON
command, and RDY to receive the Servo Ready signal. There are no built-
in procedures for SVON and RDY.

The SVON signal is controlled by the software function _8164_Set_Servo().

RDY pins are dedicated for digital input usage. The status of this signal can
be monitored using the software function _8164_get_io_status().

Relative Functions:
_8164_Set_Servo(): Refer to section 6.12

_8164_get_io_status(): Refer to section 6.13

74 • Operation Theory

4.3 The limit switch interface and I/O status

In this section, the following I/O signal operations are described.

• SD/PCS: Ramping Down & Position Change sensor

• ±EL: End-limit sensor
• ORG: Origin position

In any operation mode, if an ±EL signal is active during any moving
condition, it will cause the 8164 to stop automatically outputting pulses. If an
SD signal is active during moving conditions, it will cause the 8164 to
decelerate. If operating in a multi-axis mode, it automatically applies to all
related axes.

4.3.1 SD/PCS
SD/PCS signal pins are available for each axis and acts as the input
channel. It can be connected to a SD (Slow Down) or Position Change
Signal (PCS). To configure the input signal type use the function
_8164_set_sd_pin().

When the SD/PCS pin is directed to a SD (the default setting), the PCS
signal is kept at a low level and visa versa. Care must be taken with the
logic attributes of the signal not being used.

The slow-down signals are used to force the output pulse (OUT and DIR) to
decelerate to and then maintain the StrVel when it is active. The StrVel is
usually smaller than MaxVel. This signal is useful in protecting a
mechanism moving under high speeds toward the mechanism’s limit. SD
signal is effective for both plus and minus directions.

The ramping-down function can be enabled or disabled using the software
function _8164_set_sd(). The input logic polarity, level operation mode, or
latched input mode can also be set by this function. The signal status can
be monitored using _8164_get_io_status().

The PCS signal is used to define the starting point of current tr and sr
motions. Refer to the chart below. The logic of PCS is configurable using
_8164_set_pcs_logic()

Operation Theory • 75

Relative Functions:
_8164_set_sd_pin(),_8164_set_pcs_logic(): Refer to section 6.5

_8164_set_sd(): Refer to section 6.12

_8164_get_io_status(): Refer to section 6.13

4.3.2 EL
The end-limit signal is used to stop the control output signals (OUT and DIR)
when the end-limit is active. There are two possible stop modes, “stop
immediately” and “decelerate to StrVel then stop.” To select either mode
use _8164_set_el().

The PEL signal indicates the end-limit in the positive (plus) direction. MEL
signal indicates the end-limit in negative (minus) direction. When the output
pulse signals (OUT and DIR) is towards the positive direction, the pulse
train will be immediately stopped when the PEL signal is asserted, where
the MEL signal is meaningless, and vise versa. When the PEL is asserted,
only a negative (minus) direction output pulse can be generated when
moving the motor in a negative (minus) direction.

The EL signal can generate an IRQ if the interrupt service is enabled. Refer
to section 4.7.

You can either use ‘A’ or ‘B’ type contact switches by setting the S1
dipswitch. The 8164 is delivered from the factory with all bits of S1 set to
ON. The signal status can be monitored using the software function
_8164_get_io_status().

Relative Functions:
_8164_set_el(): Refer to section 6.12

_8164_get_io_status(): Refer to section 6.13

Start_tr_move
(Dist = 1000)

Area = 1000 pulse

PCS

Velocit Time

76 • Operation Theory

4.3.3 ORG
The ORG signal is used when the motion controller is operating in the home
return mode. There are 13 home return modes (Refer to section 4.1.8), any
one of 13 modes cam be selected using “home_mode” argument in the
function _8164_set_home_config(). The logic polarity of the ORG signal
level or latched input mode is also selectable using this function as well.

After setting the configuration for the home return mode with
_8164_set_home_config(), the _8164_home_move() command can
perform the home return function.

Relative Functions:
_8164_set_home_config(), _8164_home_move(): Refer to section 6.19

4.4 The Counters

There are four counters for each axis of the 8164. They are described in
this section:

Command position counter: counts the number of output pulses
Feedback position counter: counts the number of input pulses
Position error counter: counts the error between command and feedback
pulse numbers.
General purpose counter: The source can be configured as pulse output,
feedback pulse, manual pulse, or CLK/2.
Also, the target position recorder, a software-maintained position recorder,
is discussed.

4.4.1 Command position counter
The command position counter is a 28-bit binary up/down counter. its input
source is the output pulse from the 8164, thus, it provides accurate
information of the current position. Note: the command position is different
from target position. The command position increases or decreases
according to the pulse output, while the target position changes only when
a new motion command has been executed. The target position is recorded
by the software, and needs manually resetting after a home move is
completed.

The command position counter will clear (reset to “0”) automatically after a
home move has completed. The function _8164_set_command() can be
executed at any time to set a new command position value. To read current
command position use _8164_get_command().

Operation Theory • 77

Relative Functions:
_8164_set_command(), _8164_get_command(): Refer to section 6.15

4.4.2 Feedback position counter
The 8164 has a 28-bit binary up/down counter managing the present
position feedback for each axis. The counter counts signal inputs from the
EA and EB pins.

It accepts 2 kinds of pulse inputs: (1). Plus and minus pulse inputs
(CW/CCW mode). (2). 90 ° phase shifted signals (AB phase mode). 90 °
phase shifted signals maybe multiplied by a factor of 1, 2 or 4. 4x AB phase
mode is the most commonly used in incremental encoder inputs. For
example, if a rotary encoder has 2000 pulses per phase (A or B phase),
then the value read from the counter will be 8000 pulses per turn or –8000
pulses per turn depending on its rotating direction. These input modes can
be selected using the _8164_set_pls_iptmode() function.

In cases where the application has not implemented an encoder, it is
possible to set the feedback counter source to generate the output pulses,
just as with the command counter. Thus, the feedback counter and the
command counter will have the same value. To enable the counters to
count the number of pulses inputted, set the “Src” parameter of the
software function _8164_set_feedback_src() to “1.”

Plus and Minus Pulses Input Mode (CW/CCW Mode)
The pattern of pulses in this mode is the same as the Dual Pulse Output
Mode in the Pulse Command Output section; except that the input pins are
EA and EB.

In this mode, pulses from EA cause the counter to count up, whereas EB
caused the counter to count down.

90° phase difference signals Input Mode (AB phase Mode)
In this mode, the EA signal is a 90° phase leading or lagging in comparison
with the EB signal. “Lead” or “lag” of phase difference between two signals
is caused by the turning direction of the motor. The up/down counter counts
up when the phase of EA signal leads the phase of EB signal.

The following diagram shows the waveform.

78 • Operation Theory

The index input (EZ) signals of the encoders are used as the “ZERO”
reference. This signal is common on most rotational motors. EZ can be
used to define the absolute position of the mechanism. The input logic
polarity of the EZ signals is programmable using software function
_8164_set_home_config(). The EZ signals status of the four axes can be
monitored by get_io_status().

The feedback position counter will be automatically cleared to “0” after a
home move is complete. Besides setting a position with the function call,
_8164_set_position(), it can also be executed at any time to set a new
position value. To read the current command position use
_8164_get_position().

Relative Function:
_8164_set_pls_iptmode(), _8164_set_feedback_src() :Refer to section 6.4

_8164_set_position(), _8164_get_position(): Refer to section 6.15

_8164_set_home_config(): Refer to section 6.9

EA
 EB
 Negative Direction

EA

EB
 Positive Direction

Operation Theory • 79

4.4.3 Position error counter
The position error counter is used to calculate the error between the
command position and the feedback position. It will add one count when the
8164 outputs one pulse and subtracts one count when the 8164 receives
one pulse (from EA, EB). It is useful in detecting step-loses (stalls) in
situations of a stepping motor when an encoder is applied.

Since the position error counter automatically calculates the difference
between pulses outputted and pulses fed back, it is inevitable to get an
error if the motion ratio is not equal to “1.”

To obtain a position error reading, use the function call
_8164_get_error_counter(). To reset the position error counter, use the
function call _8164_reset_error_counter(). The position error counter will
automatically clear to “0” after home move is complete.

Relative Function:
_8164_get_error_counter(), _8164_reset_error_counter(): Refer to section
6.15

4.4.4 General purpose counter
The general purpose counter is very versatile. It can be any of the following:

1. Pulse output – as a command position counter

2. Pulse input – as a feedback position counter

3. Manual Pulse input – Default status.

4. Clock – an accurate timer (9.8 MHz)

The default setting of the general purpose counter is set to manual pulse.
(Refer to section 4.1.9 for a detailed explanation of manual pulsing). To
change the source type, use the function _8164_set_general_counter().
To obtain the counter status, use the function
_8164_get_general_counter().

Relative Function:
_8164_set_general_counter(), _8164_get_general_counter(): Refer to
section 6.15

80 • Operation Theory

Table below summarizes all functions used for the different counter types

Counter Description Counter
Source

Function Function
description

_8164_set_command Set a new value for
command position

Command Counts the
number of
output
pulses

Pulse output

_8164_get_command Read current
command position

_8164_set_pls_iptmode Select the input
modes of EA/EB

_8164_set_feedback_src Set the counters
input source

_8164_set_position Set a new value for
feedback position

Feedback counts the
number of
input pulses

EA/EB or
Pulse output

_8164_get_position Read current
feedback position:

_8164_get_error_counter Gets the position
error

Position
error

Counts the
error
between
command
and
feedback
pulse

EA/EB and
Pulse output

_8164_reset_error_counter Resets the position
error counter

_8164_set_general_counter Set a new counter
value

General
Purpose

General
Purpose
counter

Pulse output
EA/EB
manual pulse
CLK/2.

_8164_get_general_counter Read current
counter value

4.4.5 Target position recorder
The target position recorder is used for providing target position information.
For example, if the 8164 is operating in continuous motion with absolute
mode, the target position lets the next absolute motion know the target
position of previous one.

It is very important to understand how the software handles the target
position recorder. Every time a new motion command is executed, the
displacement is automatically added to the target position recorder. To
ensure the correctness of the target position recorder, users need to
manually maintain it in the following two situations using the function
_8164_reset_target_pos():

1. After a home move completes

2. After a new feedback position is set

Relative Functions:
_8164_reset_target_pos(): Refer to section 6.15

Operation Theory • 81

4.5 Multiple PCI-8164 Card Operation (PCI-8164
Only)

The software function library can support a maximum of 12 PCI-8164 cards.
This means up to 48 motors can be connected. Since the PCI-8164 is Plug-
and-Play compatible, the base address and IRQ settings for card are are
automatically assigned by the BIOS of the system when it is powered on.
The base address and IRQ settings assigned by the BIOS can view by
using the Motion Creator Tool.

When multiple cards are applied to a system, each card number must be
noted. The card number of a PCI-8164 depends on the location on the PCI
slot. They are numbered either from left to right or right to left on the PCI
slots. These card numbers will affect its corresponding axis number. Note
that the axis number is the first argument for most functions called in the
library. Hence, it is important to identify the slot number before writing any
application programs. For example, if three PCI-8164 cards are plugged in
to PCI slots, then the corresponding axis number on each card will be:

 Axis No.

Card No.
Axis 1 Axis 2 Axis 3 Axis 4

1 0 1 2 3
2 4 5 6 7
3 8 9 10 11

Example: To accelerate Axis 3 of Card2 from 0 to 10000pps in 0.5sec for
Constant Velocity Mode operation, the axis number is 6, and the code for
the program will be:

_8164_start_tv_move(6, 0, 10000, 0.5);

To determine the right card number, trial and error may be necessary
before an application. The Motion Creator utility can be utilized to minimize
the search time.

For applications requiring many axes to move simultaneously on multiple
PCI_8164 cards, connection diagrams in Section 3.12 should be followed to
connect between CN4 connectors. Several functions listed in Section 6.8
may be useful when writing programs for such applications.

82 • Operation Theory

4.6 Change position or speed on the fly

The 8164 provides the ability to change position or speed while an axis is
moving. Changing speed/position on the fly means that the target
speed/position can be altered after the motion has started. However, certain
limitations do exist. Carefully study all constraints before implementing the
on-the-fly function.

4.6.1 Change speed on the fly

The change speed on the fly function is applicable on single axis motion
only. Both velocity mode motion and position mode motion are acceptable.
The graph above shows the basic operating theory.

The following functions are related to changing speed on the fly.

_8164_v_change() – change the MaxVel on the fly

_8164_cmp_v_change() –change velocity when the general comparator
comes into existence

_8164_sd_stop() – slow down to stop

_8164_emg_stop() – immediately stop

_8164_fix_speed_range() – define the speed range

_8164_unfix_speed_range() – release the speed range constrain

The first 4 functions can be used for changing speed during a single axis
motion. Functions _8164_sd_stop() and _8164_emg_stop() are used to
decelerate the axis speed to “0.” _8164_fix_speed_range() is necessary
before any _8164_v_change() function, and _8164_unfix_speed_range()
releases the speed range constrained by _8164_fix_speed_range().

_8164_v_change(axis, new_vel, Tacc)

The same Acc/Dec slope

Tacc

new_vel

Time

Speed

Operation Theory • 83

The function _8164_cmp_v_change() almost has the same function as
_8164_v_change(), except _8164_cmp_v_change() acts only when a
general comparator comes into existence. Refer to section 4.4.4 for more
details about the general comparator.

The last 4 functions are relatively easy to understand and use. So, the
discussion below will be focused on _8164_v_change().

Theory of _8164_v_change():

The _8164_v_change() function is used to change MaxVel on the fly. In a
normal motion operation, the axis starts at StrVel speed, accelerates to
MaxVel, and then maintains MaxVel until it enters the deceleration region. If
MaxVel is change during this time, it will force the axis to accelerate or
decelerate to a new MaxVel in the time period defined by the user. Both
Trapezoidal and S-curve profiles are applicable. The speed changes at a
constant acceleration for a Trapezoidal and constant jerk for a S-curve
profile.

Constraints of _8164_v_change():

In a single axis preset mode, there must be enough remaining pulses to
reach the new velocity, else the _8164_v_change() will return an error and
the velocity remains unchanged.

_8164_sv_move

_8164_v_change

TaccTacc

84 • Operation Theory

For example:

A trapezoidal relative motion is applied:

_8164_start_tr_move(0,10000,0,1000,0.1,0.1).

It cause axis 0 to move for 10000 pulses, and the maximum velocity is 1000
PPS.

At 5000 pulses, _8164_v_change(0,NewVel,Tacc) is applied.

Necessary remaining pulses NewVel
(PPS)

Tacc
(Sec) Acceleration Deceleration Total

OK /
Error

5000 0.1 300 313 613 OK
5000 1 3000 3125 6125 Error
10000 0.1 550 556 1106 OK
50000 0.1 2550 2551 5101 Error

1. To set the maximum velocity, the function _8164_fix_speed_range()
must be used in order for the function _8164_v_change() to work
correctly. If _8164_fix_speed_range() is not applied, MaxVel set by
_8164_v_move() or _8164_start_ta_move() automatically becomes
the maximum velocity, where _8164_v_change() can not be exceeded.

2. During the acceleration or deceleration period, using

_8164_v_change() is not suggested, although it does work in most
cases, the acceleration and deceleration time is not guaranteed.

max_ vel
max_vel

With fix_speed_range

Not Suggested
max_ vel

Without fix speed range

max_vel max_vel

Not Suggested

Operation Theory • 85

Example:

There are 3 speed change sensors during an absolute move for 200000
pulses. Initial maximum speed is 10000pps. Change to 25000pps if Sensor
1 is touched. Change to 50000pps if Sensor 2 is touched. Change to
100000pps if Sensor 3 is touched. Then the code for this application and
the resulting velocity profiles are shown below.

#include “pci_8164.h”

_8164_fix_speed_range(axis, 100000.0);
_8164_start_ta_move(axis, 200000.0, 1000, 10000, 0.02,0.01);
while(!_8164_motion_done(axis))
 {
// Get sensor’s information from another I/O card

if((Sensor1==High) && (Sensor2==Low) && (Sensor3 == Low))
_8164_v_change(axis, 25000, 0.02);
else if((Sensor1==Low) && (Sensor2==High) && (Sensor3 == Low))
_8164_v_change(axis, 50000, 0.02);
else if((Sensor1==Low) && (Sensor2==Low) && (Sensor3 == High))
_8164_v_change(axis, 100000, 0.02);
 }

The information of the three sensors is acquired from another I/O card, and
the resulting velocity profile from experiment is shown below:

Motor

Sensor 2 Sensor 3

Pos=0 Pos=200000

Moving part

Sensor 1

86 • Operation Theory

Relative Function:
_8164_v_change(), _8164_sd_stop(), _8164_emg_stop()

_8164_fix_speed_range(),_8164_unfix_speed_range()

_8164_get_currebt_speed()

Refer to section 6.5

4.6.2 Change position on the fly
When operating in single-axis absolute pre-set motion, it is possible to
change the target position during moving by using the function
_8164_p_change().

Theory of _8164_p_change():

The _8164_p_change() is applicable to the _8164_start_ta_move(), and
_8164_start_sa_move() functions only. It is used to change the target
position, defined originally by these two functions. After changing position,
the axis will move to the new target position and totally disregard the
original position. If the new position is in the passed path, it will cause the
axis to decelerate and eventually stop, then reverse, as shown in the chart.
The acceleration and deceleration rate, and StrVel and MaxVel are kept the
same as the original setting.

_8164_P_change()

_8164_start_ta_move()
Original
End Point

New
End Point

Operation Theory • 87

Constraints of _8164_p_change():

1. _8164_p_change() is only applicable on single-axis absolute pre-set
motion, i.e., _8164_start_ta_move(), and _8164_start_sa_move()
only.

2. Position change during the deceleration period is not allowed.

3. There must be enough distance between the new target position and
current position where _8164_p_change() is executed because the
8164 needs enough space to finish deceleration.

For example:

A trapezoidal absolute motion is applied:

_8164_start_ta_move(0,10000,0,1000,0.5,1).

It cause axis 0 to move to pulse 10000 position with a maximum velocity of
1000 PPS. The necessary number of pulses to decelerate is 0.5*1000*1 =
500.

At position “CurrentPos,” _8164_p_change(0, NewPos) is applied.

NewPos CurrentPos OK / Error Note

5000 4000 OK
5000 4501 Error
5000 5000 Error
5000 5499 Error
5000 6000 OK Go back
5000 9499 OK Go back
5000 9500 Error
5000 9999 Error

Relative Function:
_8164_p_change(): refer to section 6.6

Speed

Position

Original

New

88 • Operation Theory

4.7 Position compare and Latch

The 8164 provides position comparison functions on axes 0 and 1, and
position latching functions on axes 2 and 3. The comparison function is
used to output a trigger pulse when the counter reaches a preset value set
by the user. CMP1 (axis 0) and CMP2 (axis 1) are used as a comparison
trigger. The latch function is used to capture values on all 4 counters (refer
to section 4.4) at the instant the latch signal is activated. LTC3 (axis 2) and
LTC4 (axis 3) are used to receive latch pulses.

4.7.1 Comparators of the 8164
There are 5 comparators for each axis of the 8164. Each comparator has its
unique functionality. Below is a table for comparison:

 Compare Source Description Function Related

Comparator 1 Command position
counter

Soft Limit (+)
(Refer to section

4.9)

Comparator 2 Command position
counter

Soft Limit (-)
(Refer to section

4.9)

_8164_set_softlimit
_8164_enable_softlimit
_8164_diable_softlimit

Comparator 3 Position error
counter

Step-losing
detection _8164_error_counter_check

Comparator 4 Any counters General- purposed _8164_set_general_comparator

Comparator 5
(Only Axis 0 &

1)

Feedback position
counter

Position compare
function (Trigger)

_8164_set_trigger_comparator
_8164_build_compare_function

_8164_build_compare_table
_8164_set_auto_compare

Note: Only comparator 5 has the ability to trigger an output pulse via the
CMP.

Comparators 1 and 2 are used for soft limits. Refer to section 4.9.
Comparator 3 is used to compare with the position error counter. It is useful
for detecting if a stepping motor has lost any pulses. To enable/disable the
step-losing detection, or set the allowable tolerance use
_8164_set_error_counter_check()

The 8164 will generate an interrupt if step-losing is enabled and has
occurred.

Comparator 4 is a general purpose comparator, which will generate an
interrupt (default reaction) if the comparing condition comes into existence.
The comparing source counter can be any counter. The compared value,
source counter, comparing method, and reaction are set by the function
_8164_set_general_comparator().

Operation Theory • 89

4.7.2 Position compare
The 5th comparator, whose comparing source is the feedback position
counter, performs the position compare function. Only the first 2 axes (0
and 1) can do a position comparison. The position comparison function
triggers a pulse output via the CMP, when the comparing condition comes
into existence.

The comparing condition consists of 2 parts, the first is the value to be
compared, and the second is the comparing mode. Comparing mode can
be “>“, “=“ or “<“. The easiest way to use the position comparison function
is to call the function:

_8164_set_trigger_comparator (AxisNo, CmpSrc, Method, Data)

The second parameter, “Method,” indicates the comparing method, while
the third parameter, “Data,” is for the value to be compared. In continuous
comparison, this data will be ignored automatically since the compare data
is built by other functions.

Continuously comparison with trigger output
To compare multiple data continuously, functions for building comparison
tables are provided and are shown below:

1. _8164_build_comp_function(AxisNo, Start, End, Interval)

2. _8164_build_comp_table(AxisNo, tableArray, Size)

3. _8164_set_auto_compare(AxisNo, SelectSource)

Note 1. Please turn off all interrupt function when these functions are
running.

The first function builds a comparison list using start and end points and
constant intervals. The second function builds on an arbitrary comparison
table (data array). The third function is a source comparing selection
function. Set this parameter to “1” to use the FIFO mode. Once it is set, the
compare mechanism will start. Users can check current values used for
comparison using the function_8164_check_compare_data():

90 • Operation Theory

Example: Using the continuous position comparison function.

In this application, the table is controlled by the motion command, and the
CCD Camera is controlled by the position comparison output of the 8164.
An image of the moving object is easily obtained.

Working Spec: 34000 triggering points per stroke, trigger speed is 6000
pts/sec)

Program Settings:
• Table starts moving from 0 to 36000
• Compare points are on 1001 35000, total 34000 pts, points to points

interval=1pulse
• Moving Speed is 6000 pps
• Compare condition is “=“

 Program codes:
_8164_set_trigger_comparator(0, 1, 1, 1001);

_8164_build_compare_function(0, 1001, 35000, 1, 1);

_8164_set_auto_compare(0, 1);

_8164_start_tr_move(0, 36000, 0, 6000, 0.01, 0.01);

Monitoring or Check the current compare data:

_8164_check_compare_data(0, 5, *CurrentData);

Users can use this function to check if auto-trigger is running.

t

v

1 2 3 4 5 6

CCD
Camera

t

v

1 2 3 4 5 6

CCD
Camera

Trigger Output

Operation Theory • 91

Pulse Width 30us

Period=166us

Results:

The compare mechanism is shown below:

The “Value” block in this figure is the position where the comparison occurs,
and where the data can be checked by using
_8164_check_compare_data().

Note that at the final compared point will still load an “After-final” point into
the “Value” block. Fill a dummy point into the comparison table array at the
final position. This value must be far enough from the table’s stroke.

Comparator

Value

4K 32bits
FIFO

Host
RAM

Data transfers
interrupt

Reload
Signal

Trigger Pulse 30us
width

3584 points background transfer
Users do not need to manage
this

92 • Operation Theory

If using _build_compare_function(), a dummy “after-final” point is
automatically loaded. This value is equal to (End point + Interval x Total
counts) x moving ratio.

Relative Function:
_8164_set_trigger_comparator(), _8164_build_comp_function()

_8164_build_comp_table(), _8164_set_auto_compare()

_8164_check_compare_data(),_8164_set_trigger_type ()

Refer to section 6.16

4.7.3 Position Latch
The position latch is different than the position compare function in the
following way: the position compare function triggers a pulse output via the
CMP, when the comparing condition comes into existence, the position
latch function receives pulse inputted via the LTC, and then captures all
data in all counters at that instant (refer to section 4.4). The latency
between the occurring latch signal and the finish position of the captured
data is extremely short as the latching procedure is done by hardware. Only
axes 2 and 3 can perform a position latch function. LTC3 (axis 2) and LTC4
(axis 3) are used to receive latch pulses.

To set the latch logic use _8164_set_ltc_logic().

To obtain the latch values of the counters use
_8164_get_latch_data(AxisNo, CntNo, Pos). The second parameter
“CntNo” is used to indicate the counter of which the latched data will be
read.

Relative Function:
_8164_set_ltc_logic(),_8164_get_latch_data(: refer to section 6.16

4.8 Hardware backlash compensator and
vibration suppression

Whenever direction change has occurred, the 8164 outputs a backlash
corrective pulse before sending the next command. The function
_8164_backlash_comp() is used to set the pulse number.

In order to minimize vibration when a motor stops, the 8164 can output a
single pulse for a negative direction and then single pulse for a positive
direction right after completion of a command movement. Refer to the
timing chart below, the _8164_suppress_vibration() function is used to set
T1 & T2.

Operation Theory • 93

Relative Function:

_8164_backlash_comp(), _8164_suppress_vibration()

Refer to section 6.6

4.9 Software Limit Function

The 8164 provides 2 software limits for each axis. The soft limit is extremely
useful in protecting a mechanical system as it works like a physical limit
switch when correctly set.

The soft limits are built on comparators 1 and 2 (Refer to section 4.7.1), and
the comparing source is the command position counter.

A preset limit value is set in comparators 1 and 2, then, when the command
position counter reaches the set limit value, the 8164 reacts by generating
the stop immediately or decelerates to stop pulse output.

To set the soft limit: _8164_set_softlimit();

To enable soft limit: _8164_enable_softlimit();

To disable soft limit: _8164_diable_softlimit();

Note: The soft limit is only applied to the command position and not the
feedback position (Refer to 4.4). In cases where the moving ratio is not
equal to “1,” it is necessary to manually calculate its corresponding
command position where the soft limit would be, when using
_8164_set_softlimit().

(+) Direction

(-) Direction

Final Pulse

T1 T2

T1/2 T2/2

94 • Operation Theory

Relative Function:
_8164_set_softlimit(), _8164_enable_softlimit(), _8164_diable_softlimit()

Refer to section 6.16

4.10 Interrupt Control

The 8164 motion controller can generate an INT signal to the host PC. The
parameter, “intFlag,” of the software function _8164_int_control(), can
enable/disable the interrupt service.

After a interrupt occurs, the function _8164_get_int_status() is used to
receive the INT status, which contains information about the INT signal. The
INT status of the 8164 comprises of two independent parts:
error_int_status and event_int_status. The event_int_status recodes
the motion and comparator event under normal operation. This INT status
can be masked by _8164_set_int_factor(). The error_int_status is for
abnormal stoppage of the 8164 (i.e. EL, ALM, etc.). This INT cannot be
masked. The following are the definitions of the two int_status:

event_int_status : can be masked by function call _8164_int_factor()
Bit Description
0 +Soft Limit on and stop
1 -Soft Limit on and stop
2 (Reserved)
3 General Comparator on and stop
4 (Reserved)
5 +End Limit on and stop
6 -End Limit on and stop
7 ALM happen and stop
8 CSTP, Sync. stop on and stop
9 CEMG, Emergency on and stop

10 SD on and slow down to stop
11 (Reserved)
12 Interpolation Error and stop
13 Other axis stop on Interpolation
14 Pulse input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error
17 Pulse input signal error

11~30 (Reserved)
31 Axis Stop Interrupt

Operation Theory • 95

error_int_status: can not be masked if interrupt service is activated.

Bit Description
0 Normal Stop
1 Next command starts
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 (Reserved)
9 (Reserved)

10 (Reserved)
11 General Comparator compared
12 Trigger Comparator compared
13 (Reserved)
14 Counter Latched for axis2,3
15 ORG Input and Latched
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20~31 (Reserved)

Use Events to handle interrupts under Windows

To detect an interrupt signal from the 8164 under Windows, a user must
create an events array first, then use the functions provided by the 8164 to
obtain the interrupt status. A sample program is listed below:

Steps:

1. Define a Global Value to deal with interrupt events. Each event is
linked to an axis

HANDLE hEvent[4];

2. Enable interrupt event service and setup interrupt factors and enable
interrupt channel

_8164_int_enable(0,hEvent);

_8164_set_int_factor(0,0x01); // Normal Stop interrupt

_8164_int_control(0,1);

3. Start move command

_8164_start_tr_move(0,12000,0,10000,0.1,0.1);

96 • Operation Theory

4. Wait for axis 0 interrupt event

STS=WaitForSingleObject(hEvent[0],15000);
ResetEvent(hEvent[0]);

if(STS==WAIT_OBJECT_0)
{

_8164_get_int_status(0, &error, &event);
if(event == 0x01) …… ; // Success

}
else if(STS==WAIT_TIME_OUT)
{
// Time out, fail
}

8164 Interrupt Service Routine (ISR) with DOS

A DOS function library is included with the 8164 for developing applications
under a DOS environment. This library also includes a few functions to work
with the ISR. It is highly recommended that programs be written according
to the following example for applications working with the ISR. Since the
PCI bus has the ability to do IRQ sharing when multiple 8164 are installed,
each 8164 should have a corresponding ISR. The library provided have the
names of the ISR fixed, for example: _8164_isr0(void),
_8164_isr1(void)…etc. A sample program is described below. It assumes
that two 8164 are present in the system, axes 1 and 5 are requested to
work with the ISR:

// header file declare
#include“pci_8164.h”

void main(void) {
I16 TotalCard,i; // Initialize cards
_8164_initial(&TotalCard);
if(TotalCard == 0) exit(1);

_8164_set_int_factor(0,0x1);// Set int factor
_8164_int_control(0,1);// enable int service

 :

: // Insert User’s Code in Main
: //

 _8164_int_control(0,0); // disable int service

Operation Theory • 97

 _8164_close(); // Close PCI-8164
}

void interrupt _8164_isr0(void)
{

U16 irq_status;// Declaration
U16 int_type;
I16 i;
U32 i_int_status1[4],i_int_status2[4];

disable();// Stop all int service
_8164_get_irq_status(0, &irq_status);// Check if this card’s int
if(irq_status)

{
for(i=0;i<4;i++) _8164_enter_isr(i);// enter ISR

 for(i=0;i<4;i++)
{

_8164_get_int_type(i, &int_type); // check int type
if(int_type & 0x1)
{

 _8164_get_error_int(i, &int_status1[i]);

 // Insert User’s Code in Error INT
//
//

}
if(int_type & 0x2)
{

_8164_get_event_int(i, &int_status2[i]);

 // Insert User’s Code in Event INT
 //
 //

}
}

// end of for every axis on card0

for(i=0;i<4;i++) _8164_leave_isr(i);
}

 else _8164_not_my_irq(0);

 // Send EOI

_OUTPORTB(0x20, 0x20);
 _OUTPORTB(0xA0, 0x20);
 enable();// allow int service

98 • Operation Theory

}

void interrupt _8164_isr1(void){}
void interrupt _8164_isr2(void){}
void interrupt _8164_isr3(void){}
void interrupt _8164_isr4(void){}
void interrupt _8164_isr5(void){}
void interrupt _8164_isr6(void){}
void interrupt _8164_isr7(void){}
void interrupt _8164_isr8(void){}
void interrupt _8164_isr9(void){}
void interrupt _8164_isra(void){}
void interrupt _8164_isrb(void){}

Relative Function:
_8164_int_control(), _8164_set_int_factor(), _8164_int_enable(),
_8164_int_disable(), _8164_get_int_status(), _8164_link_interrupt(),

_8164_get_int_type(), _8164_enter_isr(), _8164_leave_isr()

_8164_get_event_int(), _8164_get_error_int(), _8164_get_irq_status()

_8164_not_my_irq(), _8164_isr0~9, a, b

Refer to section 6.14

Motion Creator • 99

5

Motion Creator

After installing the hardware (Chapters 2 and 3), it is necessary to correctly
configure all cards and double check the system before running. This
chapter gives guidelines for establishing a control system and manually
testing the 8164 cards to verify correct operation. The Motion Creator
software provides a simple yet powerful means to setup, configure, test,
and debug a motion control system that uses 8164 cards.

Note that Motion Creator is only available for Windows 95/98 or Windows
NT/2000/XP with a screen resolution higher than 800x600. It does not run
under a DOS environment.

100 • Motion Creator

5.1 Execute Motion Creator

After installing the software drivers for the 8164 in Windows
95/98/NT/2000/XP, the motion creator program can be located at <chosen
path >\PCI-Motion\MotionCreator. To execute the program, double click on
the executable file or use Start Program Files PCI-Motion
MotionCreator.

5.2 About Motion Creator

Before Running Motion Creator, the following issues should be kept in mind.

1. Motion Creator is a program written in VB 5.0, and is available only for
Windows 95/98 or Windows NT/2000/XP with a screen resolution
higher than 800x600. It cannot be run under DOS.

2. Motion Creator allows users to save settings and configurations for
8164 cards. Saved configurations will be automatically loaded the next
time motion creator is executed. Two files, 8164.ini and 8164MC.ini, in
the windows root directory are used to save all settings and
configurations.

3. To duplicate configurations from one system to another, copy 8164.ini
and 8164MC.ini into the windows root directory.

4. If multiple 8164 cards use the same Motion Creator saved configuration
files, the DLL function call _8164_config_from_file() can be invoked
within a user developed program. This function is available in a DOS
environment as well.

Motion Creator • 101

5.3 Motion Creator Form Introducing

5.3.1 Main Menu
The main menu appears after running Motion Creator. It is used to:

5.3.2 Interface I/O Configuration Menu
In this menu, users can configure EL, ORG, EZ, ERC, ALM, INP, SD, and
LTC.

• Select operating card and axis
• Go to operation menus (refer to

section 5.3.4)
• Go to Interface I/O configuration

menus (refer to section 5.3.2)
• Go to Pulse & INT configuration

menus (refer to section 5.3.3)
• Show card information. Related

function are :
_8164_get_base_addr(),
_8164_get_irq_channel().

• Exit Motion Creator

1

2

3

4

5

6

7

8

9

102 • Motion Creator

1. ALM Logic and Response mode: Select logic and response modes of
ALM signal. The related function call is _8164_set_alm().

2. INP Logic and Enable/Disable selection: Select logic, and Enable/
Disable the INP signal. The related function call is _8164_set_inp()

3. ERC Logic and Active timing: Select the Logic and Active timing of
the ERC signal. The related function call is _8164_set_erc().

4. EL Response mode: Select the response mode of the EL signal. The
related function call is _8164_set_el().

5. ORG Logic: Select the logic of the ORG signal. The related function
call is _8164_set_home_config().

6. EZ Logic: Select the logic of the EZ signal. The related function call is
_8164_set_home_config().

7. SD Configuration: Configure the SD signal. The related function call is
_8164_set_sd().

8. LTC Logic: Select the logic of the LTC signal. The related function call
is _8164_set_ltc_logic().

9. Buttons:

• Next Axis: Change operating axis.

• Save Config: Save current configuration to 8164.ini.

• Operate: Go to the operation menu, refer to section 5.3.4

• Config Pulse & INT: Go to the Pulse IO & Interrupt Configuration
menu, refer to section 5.3.3

• Back: Return to the main menu.

Motion Creator • 103

5.3.3 Pulse IO & Interrupt Configuration Menu
In this menu, users can configure pulse input/output and move ratio and INT
factor.

1. Pulse Output Mode: Select the output mode of the pulse signal (OUT/
DIR). The related function call is _8164_set_pls_outmode().

2. Pulse Input: Sets the configurations of the Pulse input signal(EA/EB).
The related function calls are _8164_set_pls_iptmode(),
_8164_set_feedback_src().

3. INT Factor: Select factors to initiate the event int. The related function
call is _8164_set_int_factor().

4. Buttons:

• Next Axis: Change operating axis.

• Save Config: Save current configuration to 8164.ini.

• Operate: Go to the operation menu, refer to section 5.3.4

• Config Pulse & INT: Go to the Pulse IO & Interrupt Configuration
menu, refer to section 5.3.3

• Back: Return to the main menu.

1

2

3

4

104 • Motion Creator

5.3.4 Operation menu:
In this menu, users can change the settings a selected axis, including
velocity mode motion, preset relative/absolute motion, manual pulse move,
and home return.

1. Position:

• Command: displays the value of the command counter. The
related function is _8164_get_command().

• Feedback: displays the value of the feedback position counter. The
related function is _8164_get_position()

• Pos Error: displays the value of the position error counter. The
related function is _8164_get_error_counter().

• Target Pos: displays the value of the target position recorder. The
related function is _8164_get_target_pos().

1

2
3
4

5
6

14
15

7

8 9 10
11

12

13

16
18

19

20

17

Motion Creator • 105

2. Position Reset: clicking this button will set all positioning counters to a
specified value. The related functions are:

 _8164_set_position()

 _8164_set_command()

 _8164_reset_error_counter()

 _8164_reset_target_pos()

3. Motion Status: Displays the returned value of the _8164_motion_done
function. The related function is _8164_motion_done().

4. INT Status:

Event: display of event_int_status (in hexadecimal). The related
function is _8164_get_int_status().

Error: display of error_int_status (in hexadecimal). The related function
is _8164_get_int_status().

Count: total count of interrupt.

Clear Button: click this button will clear all INT status and counter to ‘0’.

5. Velocity: The absolute value of velocity in units of PPS. The related
function is _8164_get_current_speed().

6. Show Velocity Curve Button: Clicking this button will open a window
showing a velocity vs. time curve. In this curve, every 100ms, a new
velocity data point will be added. To close it, click the same button
again. To clear data, click on the curve.

106 • Motion Creator

7. Operation Mode: Select operation mode.

• Absolute Mode: “Position1” and “position2” will be used as
absolution target positions for motion. The related functions are
_8164_start_ta_move(), _8164_start_sa_move().

• Relative Mode: “Distance” will be used as relative displacement
for motion. The related function is _8164_start_tr_move(),
_8164_start_sr_move().

• Cont. Move: Velocity motion mode. The related function is
_8164_tv_move(), _8164_start_sv_move().

• Manual Pulser Move: Manual Pulse motion. Clicking this button
will invoke the manual pulse configuration window.

• Home Mode: Home return motion. Clicking this button will invoke
the home move configuration window. The related function is
_8164_set_home_config().

To Set the Pulse
input mode

To Set the Pulse
input logic

ERC Output: Select if the
ERC signal will be sent
when home move
completes.

EZ Count: Set the EZ
count number, which is
effective on certain home
return modes.

Mode: Select the home
return mode. There are 13
modes available.

Home Mode figure: The
figure shown explains the
actions of the individual
home modes.

Close: Click this button
close this window.

Motion Creator • 107

8. Position: Set the absolute position for “Absolute Mode.” It is only
effective when “Absolute Mode” is selected.

9. Distance: Set the relative distance for “Relative Mode.” It is only
effective when “Relative Mode” is selected.

10. Repeat Mode: When “On” is selected, the motion will become repeat
mode (forward backward or position1 position2). It is only
effective when “Relative Mode” or “Absolute Mode” is selected.

11. Vel. Profile: Select the velocity profile. Both Trapezoidal and S-Curve
are available for “Absolute Mode,” “Relative Mode,” and “Cont. Move.”

12. Motion Parameters: Set the parameters for single axis motion. This
parameter is meaningless if “Manual Pulser Move” is selected, since
the velocity and moving distance is decided by pulse input.

• Start Velocity: Set the start velocity of motion in units of PPS. In
“Absolute Mode” or “Relative Mode,” only the value is effective. For
example, -100.0 is the same as 100.0. In “Cont. Move,” both the
value and sign are effective. –100.0 means 100.0 in the minus
direction.

• Maximum Velocity: Set the maximum velocity of motion in units
of PPS. In “Absolute Mode” or “Relative Mode,” only the value is
effective. For example, -5000.0 is the same as 5000.0. In “Cont.
Move,” both the value and sing is effective. –5000.0 means 5000.0
in the minus direction.

• Accel. Time: Set the acceleration time in units of second.

• Decel. Time: Set the deceleration time in units of second.

• SVacc: Set the S-curve range during acceleration in units of PPS.

• SVdec: Set the S-curve range during deceleration in unit sof PPS.

• Move Delay: This setting is effective only when repeat mode is set
“On.” It will cause the 8164 to delay for a specified time before it
continues to the next motion.

13. Speed Range: Set the max speed of motion. If “Not Fix” is selected,
the “Maximum Speed” will automatically become the maximum speed
range, which can not be exceeded by on-the-fly velocity change.

14. Servo On: Set the SVON signal output status. The related function is
_8164_set_servo().

108 • Motion Creator

15. Play Key:

Left play button: Clicking this button will cause the 8164 start to outlet
pulses according to previous setting.

• In “Absolute Mode,” it causes the axis to move to position1.

• In “Relative Mode,” it causes the axis to move forward.

• In “Cont. Move,” it causes the axis to start to move according to
the velocity setting.

• In “Manual Pulser Move,” it causes the axis to go into pulse move.
The speed limit is the value set by “Maximum Velocity.”

Right play button: Clicking this button will cause the 8164 start to
outlet pulses according to previous setting.

• In “Absolute Mode,” it causes the axis to move to position.

• In “Relative Mode,” it causes the axis to move backwards.

• In “Cont. Move,” it causes the axis to start to move according to
the velocity setting, but in the opposite direction.

• In “Manual Pulser Move,” it causes the axis to go into pulse move.
The speed limit is the value set by “Maximum Velocity.”

16. Change Position On The Fly Button: When this button is enabled,
users can change the target position of the current motion. The new
position must be defined in “Position2.” The related function is
_8164_p_change().

17. Change Velocity On The Fly Button: When this button is enabled,
users can change the velocity of the current motion. The new velocity
must be defined in “Maximum Velocity.” The related function is
_8164_v_change()

18. Stop Button: Clicking this button will cause the 8164 to decelerate and
stop. The deceleration time is defined in “Decel. Time.” The related
function is _8164_sd_stop().

19. I/O Status: The status of motion I/O. Light-On means Active, while
Light-Off indicates inactive. The related function is
_8164_get_io_status().

Motion Creator • 109

20. Buttons:

• Next Axis: Change operating axis.

• Save Config: Save current configuration to 8164.ini.

• Config Pulse & INT: Go to the Pulse IO & Interrupt Configuration
menu, refer to section 5.3.3

• Config Interface I/O: Go to the Interface I/O Configuration menu,
refer to section 5.3.2

• Back: Return to the main menu.

110 • Function Library

6

Function Library

This chapter describes the supporting software for the 8164 card. User can
use these functions to develop programs in C, C++, or Visual Basic. If
Delphi is used as the programming environment, it is necessary to
transform the header files, 8164.h manually.

6.1 List of Functions

Initialization Section 6.3

Function Name Description
_8164_initial Card initialization
_8164_initialx Card initialization with I/O base address and IRQ Channel
_8164_close Card Close
_8164_get_base_addr Get base address of 8164
_8164_get_irq_channel Get the 8164 card’s IRQ number
_8164_delay_time Delay execution of program for specified time in units of ms.
_8164_config_from_file

Configure 8164 cards according to configuration file i.e.
8164.ini, which is created by Motion Creator.

_8164_version_info Check the hardware and software version

Pulse Input/Output Configuration Section 6.4

Function Name Description
_8164_set_pls_outmode Set pulse command output mode
_8164_set_pls_iptmode Set encoder input mode
_8164_set_feedback_src Set counter input source

Function Library • 111

 Velocity mode motion Section 6.5

Function Name Description
_8164_tv_move Accelerate an axis to a constant velocity with trapezoidal

profile
_8164_sv_move Accelerate an axis to a constant velocity with S-curve profile
_8164_v_change Change speed on the fly
_8164_sd_stop Decelerate to stop
_8164_emg_stop Immediately stop
_8164_fix_speed_range Define the speed range
_8164_unfix_speed_range Release the speed range constrain
_8164_get_current_speed Get current speed
_8164_verify_speed Check the min/max acceleration time under max speed

Single Axis Position Mode Section 6.6

Function Name Description
_8164_start_tr_move Begin a relative trapezoidal profile move
_8164_start_ta_move Begin an absolute trapezoidal profile move
_8164_start_sr_move Begin a relative S-curve profile move
_8164_start_sa_move Begin an absolute S-curve profile move
_8164_set_move_ratio Set the ratio of command pulse and feedback pulse.
_8164_p_change Change position on the fly
_8164_set_pcs_logic Set the logic of PCS (Position Change Signal)
_8164_set_sd_pin Set the SD/PCS pin
_8164_backlash_comp Set backlash corrective pulse for compensation
_8164_suppress_vibration Set vibration suppressing timing
_8164_set_idle_pulse Set suppress vibration idle pulse counts
_8164_start_sa_line4 Begin an absolute 4-axis linear interpolation with S-curve

profile

112 • Function Library

Linear Interpolated Motion Section 6.7

Function Name Description
_8164_start_tr_move_xy Begin a relative 2-axis linear interpolation for X & Y, with

trapezoidal profile
_8164_start_ta_move_xy Begin an absolute 2-axis linear interpolation for X & Y, with

trapezoidal profile
_8164_start_sr_move_xy Begin a relative 2-axis linear interpolation for X & Y, with S-

curve profile
_8164_start_sa_move_xy Begin an absolute 2-axis linear interpolation for X & Y, with

S-curve profile
_8164_start_tr_move_zu Begin a relative 2-axis linear interpolation for Z & U, with

trapezoidal profile
_8164_start_ta_move_zu Begin an absolute 2-axis linear interpolation for Z & U, with

trapezoidal profile
_8164_start_sr_move_zu Begin a relative 2-axis linear interpolation for Z & U, with S-

curve profile
_8164_start_sa_move_zu Begin an absolute 2-axis linear interpolation for Z & U, with

S-curve profile
_8164_start_tr_line2 Begin a relative 2-axis linear interpolation for any 2 axes,

with trapezoidal profile
_8164_start_sr_line2 Begin a relative 2-axis linear interpolation for any 2 axes,

with S-curve profile
_8164_start_ta_line2 Begin an absolute 2-axis linear interpolation for any 2 axes,

with trapezoidal profile
_8164_start_sa_line2 Begin an absolute 2-axis linear interpolation for any 2 axes,

with S-curve profile
_8164_start_tr_line3 Begin a relative 3-axis linear interpolation with trapezoidal

profile
_8164_start_sr_line3 Begin a relative 3-axis linear interpolation with S-curve

profile
_8164_start_ta_line3 Begin an absolute 3-axis linear interpolation with

trapezoidal profile
_8164_start_sa_line3 Begin an absolute 3-axis linear interpolation with S-curve

profile,
_8164_start_tr_line4 Begin a relative 4-axis linear interpolation with trapezoidal

profile
_8164_start_sr_line4 Begin a relative 4-axis linear interpolation with S-curve

profile
_8164_start_ta_line4 Begin an absolute 4-axis linear interpolation with

trapezoidal profile

Function Library • 113

Circular Interpolation Motion Section 6.8

Function Name Description
_8164_start_a_arc_xy Begin an absolute circular interpolation for X & Y
_8164_start_r_arc_xy Begin a relative circular interpolation for X & Y
_8164_start_a_arc_zu Begin an absolute circular interpolation for Z & U
_8164_start_r_arc_zu Begin a relative circular interpolation for Z & U
_8164_start_a_arc2 Begin an absolute circular interpolation for any 2 of the 4

axes
_8164_start_r_arc2 Begin a relative circular interpolation for any 2 of the 4

axes
_8164_start_tr_arc_xyu Begin a t-curve relative arc with U axis sync.
_8164_start_ta_arc_xyu Begin a t-curve absolute arc with U axis sync.
_8164_start_sr_arc_xyu Begin a s-curve relative arc with U axis sync
_8164_start_sa_arc_xyu Begin a s-curve absolute arc with U axis sync
_8164_start_tr_arc_xy Begin a t-curve relative circular interpolation for X & Y
_8164_start_ta_arc_xy Begin a t-curve absolute circular interpolation for X & Y
_8164_start_sr_arc_xy Begin a s-curve relative circular interpolation for X & Y
_8164_start_sa_arc_xy Begin a s-curve absolute circular interpolation for X & Y
_8164_start_tr_arc_zu Begin a t-curve relative circular interpolation for Z & U
_8164_start_ta_arc_zu Begin a t-curve absolute circular interpolation for Z & U
_8164_start_sr_arc_zu Begin a s-curve relative circular interpolation for Z & U
_8164_start_sa_arc_zu Begin a s-curve absolute circular interpolation for Z & U

_8164_start_tr_arc2 Begin a t-curve relative circular interpolation for any 2 of
the 4 axes

_8164_start_ta_arc2 Begin a t-curve absolute circular interpolation for any 2 of
the 4 axes

_8164_start_sr_arc2 Begin a s-curve relative circular interpolation for any 2 of
the 4 axes

_8164_start_sa_arc2 Begin a s-curve absolute circular interpolation for any 2 of
the 4 axes

Home Return Mode Section 6.9

Function Name Description
_8164_set_home_config Set the home/index logic configuration
_8164_home_move Begin a home return action
_8164_escape_home Escape Home Function
_8164_home_search Auto-Search Home Switch

114 • Function Library

Manual Pulser Motion Section 6.10

Function Name Description
_8164_set_pulser_iptmode Set pulser input mode
_8164_pulser_vmove Start pulser v move
_8164_pulser_pmove Start pulser p move
_8164_pulser_home_move Start pulser home move
_8164_set_pulser_ratio Set manual pulser ratio for actual output pulse rate
_8164_pulser_r_line2 pulser mode for 2-axis linear interpolation
_8164_pulser_r_arc2 pulser mode for 2-axis arc interpolation

Motion StatusSection 6.11

Function Name Description
_8164_motion_done Return the motion status

Motion Interface I/O Section 6.12

Function Name Description
_8164_set_alm Set alarm logic and operating mode
_8164_set_inp Set INP logic and operating mode
_8164_set_erc Set ERC logic and timing
_8164_set_servo Set state of general purpose output pin
_8164_set_sd Set SD logic and operating mode
_8164_set_el Set EL logic and operating mode

Motion I/O Monitoring Section 6.13

Function Name Description
_8164_get_io_status Get all the motion I/O status of 8164

Interrupt ControlSection 6.14

Function Name Description
_8164_int_control Enable/Disable INT service
_8164_int_enable Enable event (For Windows only)
_8164_int_disable Disable event (For Windows only)
_8164_get_int_status Get INT Status (For Windows only)
_8164_link_interrupt Set link to interrupt call back function (For Windows only)
_8164_set_int_factor Set INT factor
_8164_get_int_type Get INT type (For DOS only)
_8164_enter_isr Enter interrupt service routine (For DOS only)
_8164_leave_isr Leave interrupt service routine (For DOS only)
_8164_get_event_int Get event status (For DOS only)
_8164_get_error_int Get error status (For DOS only)
_8164_get_irq_status Get IRQ status (For DOS only)
_8164_not_my_irq Not My IRQ (For DOS only)
_8164_isr0~9, a, b Interrupt service routine (For DOS only)
_8164_set_axis_stop_int Enable axis stop int
_8164_mask_axis_stop_int Mask axis stop int

Function Library • 115

Position Control and Counters Section 6.15

Function Name Description
_8164_get_position Get the value of the feedback position counter
_8164_set_position Set the feedback position counter
_8164_get_command Get the value of the command position counter
_8164_set_command Set the command position counter
_8164_get_error_counter Get the value of the position error counter
_8164_reset_error_counter Reset the position error counter
_8164_get_general_counter Get the value of the general counter
_8164_set_general_counter Set the general counter
_8164_get_target_pos Get the value of the target position recorder
_8164_reset_target_pos Reset target position recorder
_8164_get_rest_command Get remaining pulses until the end of motion
_8164_check_rdp Check the ramping down point data

Position Compare and Latch Section 6.16

Function Name Description
_8164_set_ltc_logic Set the LTC logic
_8164_get_latch_data Get latched counter data
_8164_set_soft_limit Set soft limit
_8164_enable_soft_limit Enable soft limit function
_8164_disable_soft_limit Disable soft limit function
_8164_set_error_counter_check Step-losing detection
_8164_set_general_comparator Set general-purposed comparator
_8164_set_trigger_comparator Set Trigger comparator
_8164_set_trigger_type Set the trigger output type
_8164_check_compare_data Check current comparator data
_8164_check_compare_status Check current comparator status
_8164_set_auto_compare Set comparing data source for auto loading
_8164_build_compare_function Build compare data via constant interval
_8164_build_compare_table Build compare data via compare table
_8164_cmp_v_change Speed change by comparator

Continuous Motion Section 6.17

Function Name Description
_8164_set_continuous_move Enable continuous motion for absolute motion
_8164_check_continuous_buffer Check if the buffer is empty

116 • Function Library

Multiple Axes Simultaneous Operation Section 6.18

Function Name Description
_8164_set_tr_move_all Multi-axis simultaneous operation setup
_8164_set_ta_move_all Multi-axis simultaneous operation setup
_8164_set_sr_move_all Multi-axis simultaneous operation setup
_8164_set_sa_move_all Multi-axis simultaneous operation setup
_8164_start_move_all Begin a multi-axis trapezoidal profile motion
_8164_stop_move_all Simultaneously stop multi-axis motion
_8164_set_sync_option Optional sync options
_8164_set_sync_stop_mode Set the stop mode when CSTOP signal is ON

General-purposed TTL Output Section 6.19 (PCI-8164 Only)

Function Name Description
_8164_d_output Digital Output
_8164_get_dio_status Get DO status

General-purposed DIO Section 6.20 (MPC-8164 Only)

_8164_write_do – Digital Output
_8164_read_di – Digital Input

Function Library • 117

6.2 C/C++ Programming Library

This section details all the functions. The function prototypes and some
common data types are declared in PCI-8164.H or MPC-8164.H. We
suggest you use these data types in your application programs. The
following table shows the data type names and their range.

Type Name Description Range
U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed long integer -2147483648 to 2147483647
U32 32-bit unsigned long integer 0 to 4294967295
F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-point -1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

The functions of the 8164’s software drivers use full-names to represent the
functions real meaning. The naming convention rules are:

In a ‘C’ programming environment:

_{hardware_model}_{action_name}. e.g. _8164_Initial().

In order to recognize the difference between a C library and a VB library, a
capital “B” is placed at the beginning of each function name e.g.
B_8164_Initial().

118 • Function Library

6.3 Initialization

@ Name
_8164_Initial – Card Initialization
_8164_Initialx – Card Initialization with I/O base address and IRQ channel
_8164_Close – Card Close
_8164_get_base_addr – Get the base address of 8164_
_8164_get_irq_channel – Get the 8164 card’s IRQ number
_8164_delay_time – delay execution of program for specified time in units of ms.
_8164_config_from_file – Configure 8164 card according to configuration file i.e.

8164.ini.
_8164_version_info – Check hardware and software version information

@ Description
_8164_Initial :

This function is used to initialize an 8164 card without assigning the
hardware resources. All 8164 cards must be initialized by this function
before calling other functions. 8164 uses this function in all platforms
because it is PCI bus Plug and Play compatible. MPC-8164 uses this
function in Windows 98/NT/2000/XP.

_8164_initialx:
This function is used to initialize 8164 cards with an I/O base address and
IRQ channel. MPC-8164 uses this function under DOS, Windows CE, and
Linux.

_8164_Close :
This function is used to close 8164 card and release its resources, which
should be called at the end of an application.

_8164_get_irq_channel :
This function is used to get the 8164 card’s IRQ number.

_8164_get_base_addr:
This function is used to get the 8164 card’s base address.

_8164_delay_time:
This function is used to delay execution of program for specified time in
units of ms.

_8164_config_from_file:
This function is used to load the configuration of the 8164 according to
specified file. By using Motion Creator, users can test and configure the
8164 correctly. After pressing the “save config” button, the configuration is
saved as 8164.ini in the Windows directory. By specifying it in the
parameter, the configuration will be automatically loaded.

When this function is executed, all 8164 cards in the system will be
configured as the following functions were called according to parameters
recorded in 8164.ini.

Function Library • 119

 _8164_set_pls_outmode
 _8164_set_feedback_src
 _8164_set_pls_iptmode
 _8164_set_home_config
 _8164_set_int_factor
 _8164_set_el
 _8164_set_ltc_logic
 _8164_set_erc
 _8164_set_sd
 _8164_set_alm
 _8164_set_inp
 _8164_set_move_ratio

_8164_version_info:
Lets users read back version information

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_initial(I16 *existCards);
I16 _8164_close(void);
I16 _8164_get_irq_channel(I16 cardNo, U16 *irq_no);
I16 _8164_get_base_addr(I16 cardNo, U16 *base_addr);
I16 _8164_delay_time(I16 AxisNo, U32 MiniSec);
I16 _8164_config_from_file(char *filename);
I16 _8164_version_info(I16 CardNo, U16 *HardwareInfo, U16
 *SoftwareInfo, U16 *DriverInfo);

Visual Basic (Windows 95/NT)

B_8164_initial (existCards As Integer) As Integer
B_8164_close () As Integer
B_8164_get_irq_channel (ByVal CardNo As Integer, irq_no As Integer) As

Integer
B_8164_get_base_addr (ByVal CardNo As Integer, base_addr As Integer)

As Integer
B_8164_delay_time (ByVal AxisNo As Integer, ByVal MiniSec As Long) As

Integer
B_8164_config_from_file(ByVal filename As string)as integer
B_8164_version_info (ByVal CardNo As Integer, HardwareInfo As Integer,

SoftwareInfo As Integer, DriverInfo As Integer) As Integer

@ Argument
*existCards: Number of existing 8164 cards
cardNo: The 8164 card index number
AxNo: To specify which axis is used to measure the delay time
*irq_no: IRQ number of a specified 8164 card.
*base_addr: base address of specified 8164 card
*Filename: The specified filename recording the configuration of 8164. This

file must be created by Motion Creator of the 8164.

120 • Function Library

*Hardwareinfo: Hardware version readback in decimal
Digit 3 Digit 2 Digit 1 Digit 0

0: PCL-6045
1: PCL-6045A Undifined 0:PCI-8164

1: MPC-8164
0: CPLD A1, A2

3: CPLD A3

*SoftwareInfo: Software library version readback in decimal

 Digit 4 Digit 3 Digit 2 Digit 1 Digit 0
Win32 Month:1~12
WinCE Month + 12
DOS Month + 24

DOSExt Month + 36
Linux

3: Year 2003

Month + 48

Day:01~31

*DriverInfo: Device driver version readback in decimal

 Digit 4 Digit 3 Digit 2 Digit 1 Digit 0
Win32 Month: 1~12
WinCE Month + 12
DOS Month + 24

DOSExt Month + 36
Linux

3: Year 2003

Month + 48

Day:01~31

@ Return Code
ERR_NoError
ERR_NoCardFound
ERR_PCIBiosNotExist
ERR_ConigFileOpenError

Function Library • 121

6.4 Pulse Input/Output Configuration

@ Name
_8164_set_pls_outmode – Set the configuration for pulse command output.
_8164_set_pls_iptmode – Set the configuration for feedback pulse input.
_8164_set_feedback_src – Enable/Disable the external feedback pulse input

@ Description
_8164_set_pls_outmode:

Configure the output modes of command pulses. There are 6 modes for
command pulse output.

_8164_set_pls_iptmode:
Configure the input modes of external feedback pulses. There are four
types for feedback pulse input. Note that this function makes sense only
when the Src parameter in _8164_set_feedback_src() function is enabled.

_8164_set_feedback_src:
If external encoder feedback is available in the system, set the Src
parameter in this function to an Enabled state. Then, the internal 28-bit
up/down counter will count according to the configuration of the
_8164_set_pls_iptmode() function. Else, the counter will count the
command pulse output.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_set_pls_outmode(I16 AxisNo, I16 pls_outmode);
I16 _8164_set_pls_iptmode(I16 AxisNo, I16 pls_iptmode, I16 pls_logic);
I16 _8164_set_feedback_src(I16 AxisNo, I16 Src);

Visual Basic (Windows 95/NT)
B_8164_set_pls_outmode (ByVal AxisNo As Integer, ByVal pls_outmode

As Integer) As Integer
B_8164_set_pls_iptmode (ByVal AxisNo As Integer, ByVal pls_iptmode As

Integer, ByVal pls_logic As Integer) As Integer
B_8164_set_feedback_src (ByVal AxisNo As Integer, ByVal Src As Integer)

As Integer

@ Argument
AxisNo: Axis number designated to configure pulse Input/Output.
pls_outmode: Setting of command pulse output mode

ValueMeaning
0 OUT/DIROUT Falling edge, DIR+ is high level
1 OUT/DIROUT Rising edge, DIR+ is high level
2 OUT/DIROUT Falling edge, DIR+ is low level
3 OUT/DIROUT Rising edge, DIR+ is low level
4 CW/CCW Falling edge
5 CW/CCW Rising edge

122 • Function Library

pls_iptmode: setting of encoder feedback pulse input mode
ValueMeaning
0 1X A/B
1 2X A/B
2 4X A/B
3 CW/CCW

pls_logic: Logic of encoder feedback pulse
pls_logic=0, Not inverse direction.
pls_logic=1, Inverse direction

Src: Counter source
ValueMeaning
0 External Feedback
1 Command pulse

@ Return Code

 ERR_NoError

6.5 Velocity mode motion

@ Name
_8164_tv_move – Accelerate an axis to a constant velocity with trapezoidal

profile
_8164_sv_move – Accelerate an axis to a constant velocity with S-curve profile
_8164_v_change –Change speed on the fly
_8164_sd_stop –Decelerate to stop
_8164_emg_stop –Immediately stop
_8164_fix_speed_range – Define the speed range
_8164_unfix_speed_range – Release the speed range constrain
_8164_get_current_speed – Get current speed
_8164_verify_speed – get speed profile’s minimum and maximum acc/dec time

@ Description
_8164_tv_move:

This function is to accelerate an axis to the specified constant velocity with
a trapezoidal profile. The axis will continue to travel at a constant velocity
until the velocity is changed or the axis is commanded to stop. The direction
is determined by the sign of the velocity parameter.

_8164_sv_move:
This function is to accelerate an axis to the specified constant velocity with
a S-curve profile. The axis will continue to travel at a constant velocity until
the velocity is changed or the axis is commanded to stop. The direction is
determined by the sign of velocity parameter.

Function Library • 123

_8164_v_change:
This function changes the moving velocity with a trapezoidal profile or S-
curve profile. Before calling this function, it is necessary to define the speed
range by _8164_fix_speed_range. _8164_v_change is also applicable on
pre-set motion. Note: The velocity profile is decided by an original motion
profile. When using in S-curve, please set the motion to be pure S-curve.
There are some limitations for this function; please refer to section 4.6.1
before use it.

_8164_sd_stop:
This function is used to decelerate an axis to stop with a trapezoidal or S-
curve profile. This function is also useful when a preset move (both
trapezoidal and S-curve motion), manual move, or home return function is
performed. Note: The velocity profile is decided by original motion profile.

_8164_emg_stop:
This function is used to immediately stop an axis. This function is also
useful when a preset move (both trapezoidal and S-curve motion), manual
move, or home return function is performed.

_8164_fix_speed_range
This function is used to define the speed range. It should be called before
starting motion that may contains velocity changing.

_8164_unfix_speed_range
This function is used to release speed range constrains.

_8164_get_current_speed
This function is used to read the current pulse output rate of a specified axis.
It is applicable in any time in any operating mode.

_8164_verify_speed
Find a speed profile’s minimum and maximum accelerating time.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_tv_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);
I16 _8164_sv_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc, F64

SVacc);
I16 _8164_v_change(I16 AxisNo, F64 NewVel, F64 Tacc);
I16 _8164_sd_stop(I16 AxisNo,F64 Tdec);
I16 _8164_emg_stop(I16 AxisNo);
F64 _8164_fix_speed_range(I16 AxisNo, F64 MaxVel);
I16 _8164_unfix_speed_range(I16 AxisNo);
I16 _8164_get_current_speed(I16 AxisNo, F64 *speed);
F64 _8164_verify_speed(F64 StrVel,F64 MaxVel,F64 *minAccT,F64

*maxAccT, F64 MaxSpeed);

124 • Function Library

Visual Basic (Windows 95/NT)
B_8164_tv_move (ByVal AxisNo As Integer, ByVal StrVel As Double, ByVal

MaxVel As Double, ByVal Tacc As Double) As Integer
B_8164_sv_move (ByVal AxisNo As Integer, ByVal StrVel As Double,

ByVal MaxVel As Double, ByVal Tacc As Double, ByVal SVacc As
Double) As Integer

B_8164_v_change (ByVal AxisNo As Integer, ByVal NewVel As Double,
ByVal TimeSecond As Double) As Integer

B_8164_sd_stop (ByVal AxisNo As Integer, ByVal Tdec As Double) As
Integer

B_8164_emg_stop (ByVal AxisNo As Integer) As Integer
B_8164_fix_speed_range (ByVal AxisNo As Integer, ByVal MaxVel As

Double) As Integer
B_8164_unfix_speed_range (ByVal AxisNo As Integer) As Integer
B_8164_get_current_speed (ByVal AxisNo As Integer, Speed As Double)

As Integer
B_8164_verify_speed Lib "8164.DLL" Alias "_8164_verify_speed" (ByVal

StrVel As Double, ByVal MaxVel As Double, minAccT As Double,
maxAccT As Double, ByVal MaxSpeed As Double) As Double

@ Argument
AxisNo: Axis number designated to move or stop.
StrVel: Starting velocity in units of pulse per second
MaxVel: Maximum velocity in units of pulse per second
Tacc: Specified acceleration time in units of second
SVacc: Specified velocity interval in which S-curve acceleration is

performed.
 Note: SVacc = 0, for pure S-Curve
NewVel: New velocity in units of pulse per second
Tdec: specified deceleration time in units of second
*Speed: Variable to save current speed.

(speed range: 0~6553500)

@ Return Code
ERR_NoError
ERR_SpeedError
ERR_SpeedChangeError
ERR_SlowDownPointError
ERR_AxisAlreadyStop

Function Library • 125

6.6 Single Axis Position Mode

@ Name
_8164_start_tr_move – Begin a relative trapezoidal profile move
_8164_start_ta_move – Begin an absolute trapezoidal profile move
_8164_start_sr_move – Begin a relative S-curve profile move
_8164_start_sa_move – Begin an absolute S-curve profile move
_8164_set_move_ratio –Set the ratio of command pulse and feedback pulse.
_8164_p_change – Change position on the fly
_8164_set_pcs_logic –Set the logic of PCS (Position Change Signal) pin
_8164_set_sd_pin –Set SD/PCS pin
_8164_backlash_comp – Set backlash compensating pulse for compensation
_8164_suppress_vibration – Set vibration suppressing timing
_8164_set_idle_pulse – Set suppress vibration idle pulse counts

@ Description

General: The moving direction is determined by the sign of the Pos or Dist
parameter. If the moving distance is too short to reach the specified velocity,
the controller will automatically lower the MaxVel, and the Tacc, Tdec,
VSacc, and VSdec will also become shorter while dV/dt(acceleration /
deceleration) and d(dV/dt)/dt (jerk) are keep unchanged.

_8164_start_tr_move:
This function causes the axis to accelerate from a starting velocity, slew at
constant velocity, and decelerates to stop at the relative distance with
trapezoidal profile. The acceleration and deceleration time is specified
independently–it does not let the program wait for motion completion but
immediately returns control to the program.

_8164_start_ta_move :
This function causes the axis to accelerate from a starting velocity, slew at
constant velocity, and decelerates to stop at the specified absolute position
with trapezoidal profile. The acceleration and deceleration time is specified
independentlyThis command does not let the program wait for motion
completion, but immediately returns control to the program..

_8164_start_sr_move:
This function causes the axis to accelerate from a starting velocity, slew at
constant velocity, and decelerates to stop at the relative distance with S-
curve profile. The acceleration and deceleration time is specified
independently.This command does not let the program wait for motion
completion, but immediately returns control to the program..

_8164_start_sa_move :
This function causes the axis to accelerate from a starting velocity, slew at
constant velocity, and decelerates to stop at the specified absolute position
with S-curve profile. The acceleration and deceleration time is specified
independently.This command does not let the program wait for motion
completion but immediately returns control to the program..

126 • Function Library

_8164_set_move_ratio :
This function configures scale factors for the specified axis. Usually, the
axes only need scale factors if their mechanical resolutions are different.
For example, if the resolution of feedback sensors is two times resolution of
command pulse, then ratio = 2.

_8164_p_change
This function is used to change target position on the fly. There are some
limitations on this function. Please refer to section 4.6.2 before use it.

_8164_set_pcs_logic :
This function is used to set the logic of Position Change Signal (pcs). The
PCS share the same pin with SD signal. Only when the SD/PCS pin was
set to PCS by _8164_set_sd_pin, this _8164_set_pcs_logic function becomes
effective.

_8164_set_sd_pin :
This function is used to set the operating mode of the SD pin. The SD pin
may be used either as a Slow-Down signal input or as a Position Change
Signal (PCS) input. Please refer to section 4.3.1

_8164_backlash_comp :
Whenever direction change occurs, the 8164 outputs backlash corrective
pulses before sending commands. This function is used to set the
compensation pulse numbers.

_8164_suppress_vibration
This function is used to suppress vibration of mechanical systems by
outputting a single pulse for negative direction and then single pulse for
positive direction right after completion of command movement.

_8164_set_idle_pulse :

Set suppress vibration idle pulse counts.

(+) Direction

(-) Direction

Final Pulse

T1 T2

T1/2 T2/2

Function Library • 127

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_start_tr_move(I16 AxisNo, F64 Dist, F64 StrVel, F64 MaxVel,

F64 Tacc,F64 Tdec);
I16 _8164_start_ta_move(I16 AxisNo, F64 Pos, F64 StrVel, F64 MaxVel,

F64 Tacc, F64 Tdec);
I16 _8164_start_sr_move(I16 AxisNo, F64 Dist, F64 StrVel, F64 MaxVel,

F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _8164_start_sa_move(I16 AxisNo, F64 Pos, F64 StrVel, F64 MaxVel,

F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _8164_set_move_ratio(I16 AxisNo, F64 move_ratio);
I16 _8164_p_change(I16 AxisNo, F64 NewPos);
I16 _8164_set_pcs_logic(I16 AxisNo, I16 pcs_logic);
I16 _8164_set_sd_pin(I16 AxisNo, I16 Type);
I16 _8164_backlash_comp(I16 AxisNo, I16 BCompPulse);
I16 _8164_suppress_vibration(I16 AxisNo, U16 T1, U16 T2);
I16 _8164_set_idle_pulse(I16 AxisNo, I16 idl_pulse);

Visual Basic (Windows 95/NT)
B_8164_start_tr_move (ByVal AxisNo As Integer, ByVal Dist As Double,

ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_move (ByVal AxisNo As Integer, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_move (ByVal AxisNo As Integer, ByVal Dist As Double,
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8164_start_sa_move (ByVal AxisNo As Integer, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8164_set_move_ratio (ByVal AxisNo As Integer, ByVal move_ratio As
Double) As Integer

B_8164_p_change (ByVal AxisNo As Integer, ByVal NewPos As Double)
As Integer

B_8164_set_pcs_logic (ByVal AxisNo As Integer, ByVal pcs_logic As
Integer) As Integer

B_8164_set_sd_pin (ByVal AxisNo As Integer, ByVal Type As Integer) As
Integer

B_8164_backlash_comp (ByVal AxisNo As Integer, ByVal BCompPulse As
Integer, ByVal ForwardTime As Integer) As Integer

B_8164_suppress_vibration (ByVal AxisNo As Integer, ByVal ReserveTime
As Integer, ByVal ForwardTime As Integer) As Integer

B_8164_set_idle_pulse(ByVal AxisNo As Integer, ByVal idl_pulse As
Integer);

128 • Function Library

@ Argument
AxisNo: Axis number designated to move or change position.
Dist: Specified relative distance to move
Pos: Specified absolute position to move
StrVel: Starting velocity of a velocity profile in units of pulse per second
MaxVel: Starting velocity of a velocity profile in units of pulse per second
Tacc: Specified acceleration time in units of seconds
Tdec: Specified deceleration time in units of seconds
SVacc: Specified velocity interval in which S-curve acceleration is

performed.
 Note: SVacc = 0, for pure S-Curve
SVdec: specified velocity interval in which S-curve deceleration is

performed.
 Note: SVdec = 0, for pure S-Curve
Move_ratio: ratio of (feedback resolution)/(command resolution) , should

not be 0
NewPos: specified new absolute position to move
pcs_logic: Specify he pcs logic.

Value = 0: low active ,
Value = 1: high active

Type: define the SD pin usage
Value = 0 : SD pin as SD signal
Value = 1: SD pin as PCS signal

BcompPulse: Specified number of corrective pulses, 12 bit
T1: Specified Reverse Time, 0 ~ 65535, unit 1.6 us
T2: Specified Forward Time, 0 ~ 65535, unit 1.6 us
Idl_pulse: Idl_pulse=0~7

@ Return Code
ERR_NoError
ERR_SpeedError
ERR_PChangeSlowDownPointError
ERR_MoveRatioError

Function Library • 129

6.7 Linear Interpolated Motion

@ Name
_8164_start_tr_move_xy – Begin a relative 2-axis linear interpolation for X & Y,

with trapezoidal profile,
_8164_start_ta_move_xy – Begin an absolute 2-axis linear interpolation for X & Y,

with trapezoidal profile,
_8164_start_sr_move_xy – Begin a relative 2-axis linear interpolation for X & Y,

with S-curve profile,
_8164_start_sa_move_xy – Begin an absolute 2-axis linear interpolation for X & Y,

with S-curve profile,
_8164_start_tr_move_zu – Begin a relative 2-axis linear interpolation for Z & U,

with trapezoidal profile,
_8164_start_ta_move_zu – Begin an absolute 2-axis linear interpolation for Z & U,

with trapezoidal profile,
_8164_start_sr_move_zu – Begin a relative 2-axis linear interpolation for Z & U,

with S-curve profile,
_8164_start_sa_move_zu – Begin an absolute 2-axis linear interpolation for Z & U,

with S-curve profile,
_8164_start_tr_line2 – Begin a relative 2-axis linear interpolation for any 2 axes,

with trapezoidal profile,
_8164_start_sr_line2 – Begin a relative 2-axis linear interpolation for any 2 axes,,

with S-curve profile
_8164_start_ta_line2 – Begin an absolute 2-axis linear interpolation for any 2

axes,, with trapezoidal profile
_8164_start_sa_line2 – Begin an absolute 2-axis linear interpolation for any 2

axes,, with S-curve profile,
_8164_start_tr_line3 – Begin a relative 3-axis linear interpolation with trapezoidal

profile,
_8164_start_sr_line3 – Begin a relative 3-axis linear interpolation with S-curve

profile
_8164_start_ta_line3 – Begin an absolute 3-axis linear interpolation with

trapezoidal profile
_8164_start_sa_line3 – Begin an absolute 3-axis linear interpolation with S-curve

profile,
_8164_start_tr_line4 – Begin a relative 4-axis linear interpolation with trapezoidal

profile,
_8164_start_sr_line4 – Begin a relative 4-axis linear interpolation with S-curve

profile
_8164_start_ta_line4 – Begin an absolute 4-axis linear interpolation with

trapezoidal profile
_8164_start_sa_line4 – Begin an absolute 4-axis linear interpolation with S-curve

profile
_8164_set_axis_option – Choose the interpolation speed mode

130 • Function Library

@ Description

Function
No. of

interpolating
axes

Velocity
Profile

Relative /
Absolute

Target
Axes

_8164_start_tr_move_xy 2 T R Axes 0 & 1
_8164_start_ta_move_xy 2 T A Axes 0 & 1
_8164_start_sr_move_xy 2 S R Axes 0 & 1
_8164_start_sa_move_xy 2 S A Axes 0 & 1
_8164_start_tr_move_zu 2 T R Axes 2 & 3
_8164_start_ta_move_zu 2 T A Axes 2 & 3
_8164_start_sr_move_zu 2 S R Axes 2 & 3
_8164_start_sa_move_zu 2 S A Axes 2 & 3

_8164_start_tr_move_line2 2 T R Any 2 of 4
_8164_start_ta_move_ line2 2 T A Any 2 of 4

_8164_start_sr_move_ line2 2 S R Any 2 of 4

_8164_start_sa_move_ line2 2 S A Any 2 of 4

_8164_start_tr_move_ line3 3 T R Any 3 of 4

_8164_start_ta_move_ line3 3 T A Any 3 of 4

_8164_start_sr_move_ line3 3 S R Any 3 of 4

_8164_start_sa_move_ line3 3 S A Any 3 of 4

_8164_start_tr_move_ line4 4 T R Any 4 of 4

_8164_start_ta_move_ line4 4 T A Any 4 of 4

_8164_start_sr_move_ line4 4 S R Any 4 of 4

_8164_start_sa_move_ line4 4 S A Any 4 of 4

Function Library • 131

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_start_tr_move_xy(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_ta_move_xy(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_sr_move_xy(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _8164_start_sa_move_xy(I16 CardNo, F64 PosX, F64 PosY, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _8164_start_tr_move_zu(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_ta_move_zu(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_sr_move_zu(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _8164_start_sa_move_zu(I16 CardNo, F64 PosX, F64 PosY, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _8164_start_tr_line2(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,

F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_ta_line2(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,

F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_sr_line2(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,

F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _8164_start_sa_line2(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _8164_start_tr_line3(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,
F64 DistZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_ta_line3(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 PosZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_sr_line3(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,
F64 DistZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8164_start_sa_line3(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 PosZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8164_start_tr_line4(I16 CardNo, F64 DistX, F64 DistY, F64 DistZ, F64
DistU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_ta_line4(I16 CardNo, F64 PosX, F64 PosY, F64 PosZ, F64
PosU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_sr_line4(I16 CardNo, F64 DistX, F64 DistY, F64 DistZ, F64
DistU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc,
F64 SVdec);

I16 _8164_start_sa_line4(I16 CardNo, F64 PosX, F64 PosY, F64 PosZ,
F64 PosU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 FNTYPE _8164_set_axis_option(I16 AxisNo, I16 option);

132 • Function Library

Visual Basic (Windows 95/NT)
B_8164_start_tr_move_xy (ByVal CardNo As Integer, ByVal Dist As Double,

ByVal Dist As Double, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_move_xy (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

B_8164_start_sr_move_xy (ByVal CardNo As Integer, ByVal Dist As
Double, ByVal Dist As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_8164_start_sa_move_xy (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_8164_start_tr_move_zu (ByVal CardNo As Integer, ByVal Dist As Double,
ByVal Dist As Double, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_move_zu (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

B_8164_start_sr_move_zu (ByVal CardNo As Integer, ByVal Dist As
Double, ByVal Dist As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_8164_start_sa_move_zu (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_8164_start_tr_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_8164_start_ta_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_8164_start_sr_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_8164_start_sa_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

Function Library • 133

B_8164_start_tr_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal DistZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal PosZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal DistZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_8164_start_sa_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal PosZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_8164_start_tr_line4 (ByVal CardNo As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal DistZ As Double, ByVal DistU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_line4 (ByVal CardNo As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal PosZ As Double, ByVal PosU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_line4 (ByVal CardNo As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal DistZ As Double, ByVal DistU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_8164_start_sa_line4 (ByVal CardNo As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal PosZ As Double, ByVal PosU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_8164_set_axis_option (ByVal AxisNo As Integer, ByVal option1 As
Integer) As Integer

@ Argument
CardNo: Card number designated to perform linear interpolation
DistX: specified relative distance of axis 0 to move
DistY: specified relative distance of axis 1 to move
DistZ: specified relative distance of axis 2 to move
DistU: specified relative distance of axis 3 to move
PosX: specified absolute position of axis 0 to move
PosY: specified absolute position of axis 1 to move
PosZ: specified absolute position of axis 2 to move
PosU: specified absolute position of axis 3 to move
StrVel: starting velocity of a velocity profile in units of pulse per second
MaxVel: starting velocity of a velocity profile in units of pulse per second
Tacc: specified acceleration time in units of seconds

134 • Function Library

Tdec: specified deceleration time in units of seconds
SVacc: specified velocity interval in which S-curve acceleration is

performed.
 Note: SVacc = 0, for pure S-Curve
SVdec: specified velocity interval in which S-curve deceleration is

performed.
 Note: SVdec = 0, for pure S-Curve
AxisArray: Array of axis number to perform interpolation.

Example: Int AxisArray[2] = {0,2}; // axis 0 & 2
Int AxisArray[3] = {0,1,3}; // axis 0,1,3

Note: AxisArray[n] must be smaller than AxisArray[m], if n<m.
Option1: 0=default line move mode
 1=Composite speed constant mode

@ Return Code
ERR_NoError
ERR_SpeedError
ERR_AxisArrayErrot

6.8 Circular Interpolation Motion

@ Name
_8164_start_r_arc_xy – Begin a relative circular interpolation for X & Y
_8164_start_a_arc_xy – Begin an absolute circular interpolation for X & Y
_8164_start_r_arc_zu – Begin a relative circular interpolation for Z & U
_8164_start_a_arc_zu – Begin an absolute circular interpolation for Z & U
_8164_start_r_arc2 – Begin a relative circular interpolation for any 2 axes
_8164_start_a_arc2 – Begin an absolute circular interpolation for any 2 axes

_8164_start_tr_arc_xyu – Begin a T-curve relative circular interpolation
_8164_start_ta_arc_xyu – Begin a T-curve absolute circular interpolation
_8164_start_sr_arc_xyu – Begin a S-curve relative circular interpolation
_8164_start_sa_arc_xyu – Begin a S-curve absolute circular interpolation
_8164_start_tr_arc_yzu – Begin a T-curve relative circular interpolation
_8164_start_ta_arc_yzu – Begin a T-curve absolute circular interpolation
_8164_start_sr_arc_yzu – Begin a S-curve relative circular interpolation
_8164_start_sa_arc_yzu – Begin a T-curve absolute circular interpolation

_8164_start_tr_arc2 – Begin a T-curve relative circular interpolation
_8164_start_ta_arc2 – Begin a T-curve absolute circular interpolation
_8164_start_sr_arc2– Begin a S-curve relative circular interpolation
_8164_start_sa_arc2– Begin a S-curve absolute circular interpolation
_8164_start_tr_arc_xy – Begin a T-curve relative circular interpolation
_8164_start_ta_arc_xy – Begin a T-curve absolute circular interpolation
_8164_start_tr_arc_zu – Begin a T-curve relative circular interpolation
_8164_start_ta_arc_zu – Begin a T-curve absolute circular interpolation
_8164_start_sr_arc_xy – Begin a S-curve relative circular interpolation
_8164_start_sa_arc_xy – Begin a S-curve absolute circular interpolation
_8164_start_sr_arc_zu – Begin a S-curve relative circular interpolation
_8164_start_sa_arc_zu – Begin a S-curve absolute circular interpolation

Function Library • 135

@ Description

Function Relative /
Absolute

Speed
Profile Target Axes Hardware

version bit 12
_8164_start_r_arc_xy R Flat Axes 0 & 1 0 or 1
_8164_start_a_arc_xy A Flat Axes 0 & 1 0 or 1
_8164_start_r_arc_zu R Flat Axes 2 & 3 0 or 1
_8164_start_a_arc_zu A Flat Axes 2 & 3 0 or 1
_8164_start_r_arc2 R Flat Any 2 of 4 0 or 1
_8164_start_a_arc2 A Flat Any 2 of 4 0 or 1

_8164_start_tr_arc_xyu R T-curve Axes 0 & 1 0 or 1
_8164_start_ta_arc_xyu A T-Curve Axes 0 & 1 0 or 1
_8164_start_sr_arc_xyu R S-Curve Axes 1 & 2 0 or 1
_8164_start_sa_arc_xyu A S-Curve Axes 1 & 2 0 or 1

_8164_start_tr_arc_xy R T-curve Axes 0 & 1 1
_8164_start_ta_arc_xy A T-Curve Axes 0 & 1 1
_8164_start_sr_arc_xy R S-Curve Axes 0 & 1 1
_8164_start_sa_arc_xy A S-Curve Axes 0 & 1 1
_8164_start_tr_arc_zu R T-curve Axes 2 & 3 1
_8164_start_ta_arc_zu A T-Curve Axes 2 & 3 1
_8164_start_sr_arc_zu R S-Curve Axes 2 & 3 1
_8164_start_sa_arc_zu A S-Curve Axes 2 & 3 1
_8164_start_tr_arc2 R T-curve Any 2 of 4 1
_8164_start_ta_arc2 A T-Curve Any 2 of 4 1

_8164_start_sr_arc2 R S-Curve Any 2 of 4 1
_8164_start_sa_arc2 A S-Curve Any 2 of 4 1

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_start_r_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);
I16 _8164_start_a_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,

I16 DIR, F64 MaxVel);
I16 _8164_start_r_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);
I16 _8164_start_a_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,

I16 DIR, F64 MaxVel);
I16 _8164_start_r_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64

OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);
I16 _8164_start_a_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64

Ex, F64 Ey, I16 DIR, F64 MaxVel);

I16 _8164_start_tr_arc_xyu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64
Tacc);

136 • Function Library

I16 _8164_start_ta_arc_xyu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc);

I16 _8164_start_sr_arc_xyu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 SVacc);

I16 _8164_start_sa_arc_xyu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc, F64 SVacc);

I16 _8164_start_tr_arc_yzu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64
Tacc);

I16 _8164_start_ta_arc_yzu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc);

I16 _8164_start_sr_arc_yzu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 SVacc);

I16 _8164_start_sa_arc_yzu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc, F64 SVacc);

I16 _8164_start_tr_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64
OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64
MaxVel, F64 Tacc,F64 Tdec);

I16 _8164_start_ta_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64
Ex, F64 Ey, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,F64 Tdec);

I16 _8164_start_sr_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64
OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64
MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_sa_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64
Ex, F64 Ey, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,F64
Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_tr_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _8164_start_ta_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8164_start_tr_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _8164_start_ta_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8164_start_sr_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel, F64
Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_sa_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _8164_start_sr_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel, F64
Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_sa_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

Function Library • 137

Visual Basic (Windows 95/NT)
B_8164_start_a_arc_xy (ByVal CardNo As Integer, ByVal Cx As Double,

ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal MaxVel As Double) As Integer

B_8164_start_r_arc_xy (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_8164_start_a_arc_zu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal MaxVel As Double) As Integer

B_8164_start_r_arc_zu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_8164_start_a_arc2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal Cx As Double, ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_8164_start_r_arc2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal MaxVel As Double) As Integer

B_8164_start_tr_arc_xyu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_8164_start_ta_arc_xyu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_8164_start_sr_arc_xyu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_8164_start_sa_arc_xyu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal SVacc As Double) As Integer

B_8164_start_tr_arc_yzu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_8164_start_ta_arc_yzu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

138 • Function Library

B_8164_start_sr_arc_yzu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_8164_start_sa_arc_yzu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal SVacc As Double) As Integer

B_8164_start_tr_arc2 (ByVal CardNo As Integer, AxisArray As Double,

ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal Cx As Double, ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_sr_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_8164_start_sa_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal Cx As Double, ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec As Double) As
Integer

B_8164_start_tr_arc_xy (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_8164_start_ta_arc_xy (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_tr_arc_zu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_8164_start_ta_arc_zu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_arc_xy (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,

Function Library • 139

ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_8164_start_sa_arc_xy (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double) As Integer

B_8164_start_sr_arc_zu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_8164_start_sa_arc_zu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double) As Integer

@ Argument
CardNo: Card number designated to perform linear interpolation
OffsetCx: X-axis offset to center
OffsetCy: Y-axis offset to center
OffsetEx: X-axis offset to end of arc
OffsetEy: Y-axis offset to end of arc
Cx: Specified X-axis absolute position of center
Cy: Specified Y-axis absolute position of center
Ex: Specified X-axis absolute position end of arc
Ey: Specified Y-axis absolute position end of arc
DIR: Specified direction of arc, CW:0 , CCW:1
StrVel: Starting velocity of a velocity profile in unit of pulse per second
MaxVel: Starting velocity of a velocity profile in unit of pulse per second
Tacc: Specified acceleration time in unit of second
Tdec: Specified deceleration time in unit of second
SVacc: Specified velocity interval in which S-curve acceleration is

performed.
 Note: SVacc = 0, for pure S-Curve
SVdec: Specified velocity interval in which S-curve deceleration is

performed.
 Note: SVdec = 0, for pure S-Curve
AxisArray: Array of axis number to perform interpolation.

Example: Int AxisArray[2] = {0,2}; // axis 0 & 2
Int AxisArray[2] = {1,3}; // axis 1 & 3

Note: AxisArray[0] must be smaller than AxisArray[1]

@ Return Code
 ERR_NoError
ERR_SpeedError
ERR_AxisArrayErrot

140 • Function Library

6.9 Home Return Mode

@ Name
_8164_set_home_config – Set the configuration for home return.
_8164_home_move – Perform a home return move.
_8164_escape_home – Escape Home Function
_8164_home_search –Auto-Search Home Switch

@ Description
_8164_set_home_config:

Configures the home return mode, origin & index signal(EZ) logic, EZ count,
and ERC output options for the home_move() function. Refer to Section
4.1.8 for the setting of home_mode control.

_8164_home_move:
This function will cause the axis to perform a home return move according
to the _8164_set_home_config() function settings. The direction of
movement is determined by the sign of velocity parameter (svel, mvel).
Since the stopping condition of this function is determined by the
home_mode setting, users should take care in selecting the initial moving
direction. Users should also take care to handle conditions when the limit
switch is touched or other conditions that are possible causing the axis to
stop. Executing v_stop() function during home_move() can also cause the
axis to stop.

_8164_escape_home:
After homing, use this function to leave the home switch

_8164_home_search:
Auto-Search Home Switch.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_set_home_config(I16 AxisNo, I16 home_mode, I16 org_logic,

I16 ez_logic, I16 ez_count, I16 erc_out);
I16 _8164_home_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);
I16 _8164_escape_home(I16 AxisNo, F64 SrVel,F64 MaxVel,F64 Tacc);
I16 _8164_home_search(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc,

F64 ORGOffset);
Visual Basic (Windows 95/NT)

B_8164_set_home_config (ByVal AxisNo As Integer, ByVal home_mode As
Integer, ByVal org_logic As Integer, ByVal ez_logic As Integer,
ByVal ez_count As Integer, ByVal erc_out As Integer) As Integer

B_8164_home_move (ByVal AxisNo As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double) As Integer

B_8164_escape_home(ByVal AxisNo As Integer, ByVal SrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double);

B_8164_home_search (ByVal AxisNo As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal ORGOffset

Function Library • 141

As Double) As Integer

@ Argument
AxisNo: Axis number designated to configure and perform home return
home_mode: Stopping modes for home return, 0~12

(Please refer to section 4.1.8)
org_logic: Action logic configuration for ORG

org_logic=0, active low;
org_logic=1, active high

EZ_logic: Action logic configuration for EZ
 EZ_logic=0, active low;

EZ_logic=1, active high.
ez_count: 0~15 (Please refer to section 4.1.8)
erc_out: Set ERC output options.

erc_out =0, no erc out;
erc_out =1, erc out when home finishing

StrVel: starting velocity of a velocity profile in units of pulse per second
MaxVel: starting velocity of a velocity profile in units of pulse per second
Tacc: specified acceleration time in units of seconds
ORGOffset: The escape pulse amounts when home search touches the

ORG singal

@ Return Code

 ERR_NoError

6.10 Manual Pulser Motion

@ Name
_8164_set_pulser_iptmode - set the input signal modes of pulser
_8164_pulser_vmove – manual pulser v_move
_8164_pulser_pmove – manual pulser p_moce
_8164_pulser_home_move – manual pulser home move
_8164_set_pulser_ratio –Set manual pulser ratio for actual output pulse rate
_8164_pulser_r_line2 –Pulser mode for 2-axis linear interpolation
_8164_pulser_r_arc2 –Pulser mode for 2-axis arc interpolation

@ Description
_8164_set_pulser_iptmode:

This function is used to configure the input mode of manual pulser.
_8164_pulser_vmove:

With this command, the axis begins to move according to the manual pulse
input. The axis will output one pulse when it receives one manual pulse,
until the sd_stop or emg_stop command is written.

142 • Function Library

_8164_pulser_pmove:
With this command, the axis begins to move according to the manual pulse
input. The axis will output one pulse when it receives one manual pulse,
until the sd_stop or emg_stop command is written or the output pulse
number reaches the distance.

_8164_pulser_home_move:
With this command, the axis begins to move according to manual pulse
input. The axis will output one pulse when it receives one manual pulse,
until the sd_stop or emg_stop command is written or the home move
finishes.

_8164_set_pulser_ratio:
Set manual pulse ratio for actual output pulse rate. The formula for manual
pulse output rate is:

• Output Pulse Speed=(PA_PB Speed) * 4 * (PMG+1)*PDV/2048
• The PDV=0~10 Divide Factor
• The PMG=0~4 Multi Factor

_8164_set_pulser_ratio:
Pulser mode for 2-axis linear interpolation (relative mode only).

_8164_pulser_r_arc2:
Pulser mode for 2-axis arc interpolation (relative mode only)

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_set_pulser_iptmode(I16 AxisNo,I16 InputMode, I16 Inverse);
I16 _8164_pulser_vmove(I16 AxisNo, F64 SpeedLimit);
I16 _8164_pulser_pmove(I16 AxisNo, F64 Dist, F64 SpeedLimit);
I16 _8164_pulser_home_move(I16 AxisNo, I16 HomeType, F64

SpeedLimit);
I16 _8164_set_pulser_ratio(I16 AxisNo,I16 PDV, I16 PMG);
I16 _8164_pulser_r_line2(I16 CardNo,I16 *AxisArray, F64 DistX, F64 DistY,

F64 SpeedLimit);
I16 _8164_pulser_r_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64

OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);

Visual Basic (Windows 95/NT)

B_8164_set_pulser_iptmode (ByVal AxisNo As Integer, ByVal InputMode
As Integer, ByVal Inverse As Integer) As Integer

B_8164_pulser_vmove (ByVal AxisNo As Integer, ByVal SpeedLimit As
Double) As Integer

B_8164_pulser_pmove (ByVal AxisNo As Integer, ByVal Dist As Double,
ByVal SpeedLimit As Double) As Integer

B_8164_pulser_home_move (ByVal AxisNo As Integer, ByVal HomeType
As Integer, ByVal SpeedLimit As Double) As Integer

B_8164_set_pulser_ratio(ByVal AxisNo As Integer, ByVal PDV As Integer,
ByVal PMG As Integer) As Integer

Function Library • 143

B_8164_pulser_r_line2(ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal SpeedLimit
As Double) As Integer

B_8164_pulser_r_arc2(ByVal CardNo As Integer, AxisArray As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal MaxVel As Double) As Integer

@ Argument
AxisNo: Axis number designated to start manual move
InputMode: Setting of manual pulse input mode from the PA and PB pins
 ipt_mode=0, 1X AB phase type pulse input.
 ipt_mode=1, 2X AB phase type pulse input.
 ipt_mode=2, 4X AB phase type pulse input.
 ipt_mode=3, CW/CCW type pulse input.
Inverse: Reverse the moving direction from pulse direction
 Inverse =0, no inverse
 Inverse =1, Reverse moving direction
SpeedLimit: The maximum speed in a manual pulse move.

For example, if SpeedLimit is set to be 100pps, then the axis can
move at fastest 100pps , even the input pulser signal
rate is more then 100pps.

Dist: specified relative distance to move
HomeType: specified home move type
 HomeType =0, Command Origin.(that means axis stops

when command counter becomes ‘0’)
 HomeType =1, ORG pin.
PDV, PMG: Divide and Multi Factor.

PDV=0~10 Divide Factor
PMG=0~4 Multi Factor

The Output Pulse Speed=(PA_PB Speed) * 4 * (PMG+1)*PDV/2048
DistX: specified relative distance of axis 0 to move
DistY: specified relative distance of axis 1 to move
OffsetCx: X-axis offset from center
OffsetCy: Y-axis offset from center
OffsetEx: X-axis offset from end of arc
OffsetEy: Y-axis offset from end of arc
DIR: Specified direction of arc, CW:0 , CCW:1
SpeedLimit: Maximum tangential velocity in units of pulse per second
MaxVel: Maximum tangential velocity in units of pulse per second

@ Return Code

ERR_NoError
ERR_PulserHomeTypeError

144 • Function Library

6.11 Motion Status

@ Name
_8164_motion_done – Return the motion status

@ Description
_8164_motion_done:

Return the motion status of the 8164.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_motion_done(I16 AxisNo);

Visual Basic (Windows 95/NT)
B_8164_motion_done (ByVal AxisNo As Integer) As Integer

@ Argument
AxisNo: Axis number designated to start manual move

@ Return Value
0 Stop
1 Reserved
2 Reserved
3 Reserved
4 Wait for other axis
5 Wait ERC finished
6 Wait DIR Change
7 Backlash compensating
8 Wait PA/PB
9 In home special speed motion
10 In start velocity motion
11 In acceleration
12 In Max velocity motion
13 In deceleration
14 Wait INP
15 Other axis is still moving

Function Library • 145

6.12 Motion Interface I/O

@ Name
_8164_set_alm – Set alarm logic and operating mode
_8164_set_el – Set EL logic and operating mode
_8164_set_inp– Set Inp logic and operating mode
_8164_set_erc– Set ERC logic and timing
_8164_set_servo – Set state of general purpose output pin
_8164_set_sd – Set SD logic and operating mode

@ Description
_8164_set_alm_logic:

Set the active logic of the ALARM signal input from the servo driver. Two
reacting modes are available when the ALARM signal is active.

_8164_set_el:
Set the reacting modes of the EL signal.

_8164_set_inp_logic:
Set the active logic of the In-Position signal input from the servo driver.
Users can select whether they want to enable this function. It is disabled by
default.

_8164_set_erc:
You can set the logic and on time of the ERC with this function.

_8164_set_servo:
You can set the ON-OFF state of the SVON signal with this function. The
default value is 1(OFF), which means the SVON is open to GND.

_8164_set_sd:
Set the active logic, latch control, and operating mode of the SD signal input
from a mechanical system. Users can select whether they want to enable
this function. It is disabled by default.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_set_alm(I16 AxisNo, I16 alm_logic, I16 alm_mode);
I16 _8164_set_el(I16 AxisNo, I16 el_mode);
I16 _8164_set_inp(I16 AxisNo, I16 inp_enable, I16 inp_logic);
I16 _8164_set_erc(I16 AxisNo, I16 erc_logic, I16 erc_on_time);
I16 _8164_set_servo(I16 AxisNo, I16 on_off);
I16 _8164_set_sd(I16 AxisNo, I16 enable, I16 sd_logic, I16 sd_latch, I16

sd_mode);
Visual Basic (Windows 95/NT)

B_8164_set_alm (ByVal AxisNo As Integer, ByVal alm_logic As Integer,
ByVal alm_mode As Integer) As Integer

B_8164_set_el (ByVal AxisNo As Integer, ByVal el_mode As Integer) As
Integer

B_8164_set_inp (ByVal AxisNo As Integer, ByVal inp_enable As Integer,

146 • Function Library

ByVal inp_logic As Integer) As Integer
B_8164_set_erc (ByVal AxisNo As Integer, ByVal erc_logic As Integer,

ByVal erc_on_time As Integer) As Integer
B_8164_set_servo (ByVal AxisNo As Integer, ByVal On_Off As Integer) As

Integer
B_8164_set_sd (ByVal AxisNo As Integer, ByVal enable As Integer, ByVal

sd_logic As Integer, ByVal sd_latch As Integer, ByVal sd_mode As
Integer) As Integer

@ Argument
AxisNo: Axis number designated to configure
alm_logic: Setting of active logic for ALARM signals
 alm_logic=0, active LOW.
 alm_logic=1, active HIGH.
alm_mode: Reacting modes when receiving an ALARM signal.
 alm_mode=0, motor immediately stops (default)
 alm_mode=1, motor decelerates then stops.
el_mode: Reacting modes when receiving an EL signal.
 el_mode=0, motor immediately stops (default)
 el_mode=1, motor decelerates then stops.
inp_enable: INP function enabled/disabled
 inp_enable=0, Disabled (default)
 inp_enable=1, Enabled
inp_logic: Set the active logic for the INP signal
 inp_logic=0, active LOW.
 inp_logic=1, active HIGH.
erc_logic: Set the active logic for the ERC signal

erc_logic=0, active LOW.
erc_logic=1, active HIGH.

erc_on_time: Set the time length of ERC active
erc_on_time=012us
erc_on_time=1102us
erc_on_time=2409us
erc_on_time=31.6ms
erc_on_time=413ms
erc_on_time=552ms
erc_on_time=6104ms

on_off: ON-OFF state of SVON signal
on_off = 0 , ON
on_off = 1 , OFF

enable: Enable/disable the SD signal.
 enable=0, Disabled (Default)
 enable=1, Enabled
sd_logic: Set the active logic for the SD signal
 sd_logic=0, active LOW.
 sd_logic=1, active HIGH.
sd_latch: Set the latch control for the SD signal
 sd_latch=0, do not latch.
 sd_latch=1, latch.
sd_mode: Set the reacting mode of the SD signal
 sd_mode=0, slow down only
 sd_mode=1, slow down then stop

Function Library • 147

@ Return Code
 ERR_NoError

6.13 Motion I/O Monitoring

@ Name
_8164_get_io_status –Get all the motion I/O statuses of each 8164

@ Description
_8164_get_io_status:

Get all the I/O statuses for each axis. The definition for each bit is as follows:
Bit Name Description

0 RDY RDY pin input
1 ALM Alarm Signal
2 +EL Positive Limit Switch
3 -EL Negative Limit Switch
4 ORG Origin Switch
5 DIR DIR output
6 Reserved
7 PCS PCS signal input
8 ERC ERC pin output
9 EZ Index signal
10 Reserved
11 Latch Latch signal input
12 SD Slow Down signal input
13 INP In-Position signal input
14 SVON Servo-ON output status

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _8164_get_io_status(I16 AxisNo, U16 *io_sts);

Visual Basic (Windows 95/NT)
B_8164_get_io_status (ByVal AxisNo As Integer, io_sts As Integer) As

Integer

@ Argument
AxisNo: Axis number for I/O control and monitoring
*io_status: I/O status word. “1” is ON and “0” is OFF. ON/OFF state is read

based on the corresponding set logic.

@ Return Code

 ERR_NoError

148 • Function Library

6.14 Interrupt Control

@ Name
_8164_int_control – Enable/Disable INT service
_8164_set_int_factor – Set INT factor
_8164_int_enable – Enable event (For Window only)
_8164_int_disable – Disable event (For Window only)
_8164_get_int_status – Get INT Status (For Window only)
_8164_link_interrupt – Set link to interrupt call back function (For Window only)
_8164_get_int_type – Get INT type (For DOS only)
_8164_enter_isr – Enter interrupt service routine (For DOS only)
_8164_leave_isr – Leave interrupt service routine (For DOS only)
_8164_get_event_int – Get event status (For DOS only)
_8164_get_error_int – Get error status (For DOS only)
_8164_get_irq_status – Get IRQ status (For DOS only)
_8164_not_my_irq – Not My IRQ (For DOS only)
_8164_isr0~9, a, b – Interrupt service routine (For DOS only)
_8164_set_axis_stop_int – enable axis stop int
_8164_mask_axis_stop_int – mask axis stop int

@ Description
_8164_int_control:

This function is used to enable interrupt generating to host PC.
_8164_set_int_factor:

This function allows users to select factors to initiate the event int. The error
can never be masked once the interrupt service is turned on by
_8164_int_control().

The INT status of 8164 is composed of two independent parts:
error_int_status and event_int_status. The event_int_status recordes the
motion and comparator event under normal operation, and this kind of INT
status can be masked by _8164_set_int_factor(). The error_int_status is
for abnormal stop of the 8164, for example: EL, ALM …etc. This kind of INT
cannot be masked. Below is the definition of these two int_status. By setting
the relative bit as 1, 8164 can generate INT signal to host PC.

Function Library • 149

Bit Description
0 Normal Stop
1 Next command Starts
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 (Reserved)
9 (Reserved)
10 (Reserved)
11 General Comparator compared
12 Trigger Comparator compared
13 (Reserved)
14 Counter Latched for axis2,3
15 ORG Input and Latched
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20~31 (Reserved)

_8164_int_enable : (For Window only.)
This function is used to enable the Windows INT event.

_8164_int_disable: (For Window only.)
This function is used to disable the Windows INT event.

_8164_get_int_status: (For Window only.)
This function allows user to identify what caused the interrupt signal. After
the value is obtained, the status register will be cleared to 0. The return
value is two 32 bits unsigned integers. The first one is for error_int_status,
which is not able to mask by _8164_set_int_factor(). The definition for bit of
error_int_status is as following:

150 • Function Library

error_int_status : can not be masked

Bit Interrupt Factor
0 +Soft Limit on and stop
1 -Soft Limit on and stop
2 (Reserved)
3 General Comparator on and Stop
4 (Reserved)
5 +End Limit on and stop
6 -End Limit on and stop
7 ALM happen and stop
8 CSTP, Sync. Stop on and stop
9 CEMG, Emergency on and stop

10 SD on and slow down to stop
11 (Reserved)
12 Interpolation Error and stop
13 Other Axis stop on Interpolation
14 Pulser input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error
17 Pulser input signal error

11~31 (Reserved)

The second is for event_int_status, which can be masked by
_8164_set_int_factor(). See table below:
event_int_status: can be masked by function call _8164_int_factor()

Bit Description
0 Normal Stop
1 Next command Starts
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 (Reserved)
9 (Reserved)

10 (Reserved)
11 General Comparator compared
12 Trigger Comparator compared
13 (Reserved)
14 Counter Latched for axes 2 and 3
15 ORG Input and Latched
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20~30 (Reserved)
31 Axis Stop Interrupt

Function Library • 151

_8164_link_interrupt: (For Window only.)

This function is used to link to the interrupt call back function.
_8164_get_int_type: (This function is for DOS only)

This function is used to detect which kind of INT occurred.
_8164_enter_isr: (This function is for DOS only)

This function is used to inform the system that the process is now entering
interrupt service routine.

_8164_leave_isr: (This function is for DOS only)
This function is used to inform the system that the process is now leaving
interrupt service routine.

_8164_get_event_int: (This function is for DOS only)
This function is used to get event_int_status.

_8164_get_error_int: (This function is for DOS only)
This function is used to get error_int_status.

_8164_get_irq_status: (This function is for DOS only)
This function allows user to confirm if the designated card generates the
INT signal to host PC.

_8164_not_my_irq: (This function is for DOS only)
This function must be called after the designated card generates the INT
signal to host PC.

_8164_isr0, _8164_isr1, _8164_isr2, _8164_isr3, ….. _8164_isr9,
_8164_isra, _8164_isrb: (These functions are for DOS only)

Individual Interrupt service routine for cards 0-11.
_8164_set_axis_stop_int:

This function will enable an axis stop interrupt. Once it is enabled, the
interrupt will happen no matter it is a normal stop or error stop. This
interrupt condition can be turned on or off accompanied with every motion
command by setting _8164_mask_axis_stop_int(). This kind of interrupt
condition is different from _8164_set_int_factor(). It can be controlled in
each motion command, which is very useful in continuous motion when
users only need a final command interrupt. The interrupt status is in “event
interrupt status” bit 31.

_8164_mask_axis_stop_int:
This function will affect the axis stop interrupt factor which is set by
_8164_set_axis_stop_int().

152 • Function Library

@ Syntax

C/C++ (DOS)
I16 _8164_int_control(U16 cardNo, U16 intFlag);
I16 _8164_set_int_factor(I16 AxisNo, U32 int_factor);
I16 _8164_get_int_type(I16 AxisNo, U16 *int_type);
I16 _8164_enter_isr(I16 AxisNo);
I16 _8164_leave_isr(I16 AxisNo);
I16 _8164_get_event_int(I16 AxisNo, U32 *event_int);
I16 _8164_get_error_int(I16 AxisNo, U32 *error_int);
I16 _8164_get_irq_status(U16 cardNo, U16 *sts);
I16 _8164_not_my_irq(I16 CardNo);
void interrupt _8164_isr0 (void);
void interrupt _8164_isr1 (void);
void interrupt _8164_isr2 (void);
void interrupt _8164_isr3 (void);
void interrupt _8164_isr4 (void);
void interrupt _8164_isr5 (void);
void interrupt _8164_isr6 (void);
void interrupt _8164_isr7 (void);
void interrupt _8164_isr8 (void);
void interrupt _8164_isr9 (void);
void interrupt _8164_isra (void);
void interrupt _8164_isrb (void);

C/C++ (Windows 95/98/NT)
I16 _8164_int_control(U16 cardNo, U16 intFlag);
I16 _8164_set_int_factor(I16 AxisNo, U32 int_factor);
I16 _8164_int_enable(I16 CardNo, HANDLE *phEvent);
I16 _8164_int_disable(I16 CardNo);
I16 _8164_get_int_status(I16 AxisNo, U32 *error_int_status, U32

*event_int_status);
I16 _8164_link_interrupt(I16 CardNo, void (__stdcall *callbackAddr)(I16

IntAxisNoInCard));
I16 _8164_set_axis_stop_int(I16 AxisNo, I16 axis_stop_int);
I16 _8164_mask_axis_stop_int(I16 AxisNo, I16 int_disable);

Visual Basic (Windows 95/NT)
B_8164_int_control (ByVal CardNo As Integer, ByVal intFlag As Integer) As

Integer
B_8164_set_int_factor (ByVal AxisNo As Integer, ByVal int_factor As Long)

As Integer
B_8164_int_enable (ByVal CardNo As Integer, phEvent As Long) As

Integer
B_8164_int_disable (ByVal CardNo As Integer) As Integer
B_8164_get_int_status (ByVal AxisNo As Integer, error_int_status As Long,

event_int_status As Long) As Integer
B_8164_link_interrupt (ByVal CardNo As Integer, ByVal lpCallBackProc As

Long) As Integer
B_8164_mask_axis_stop_int (ByVal AxisNo As Integer, ByVal int_disable

As Integer) As Integer
B_8164_set_axis_stop_int (ByVal AxisNo As Integer, ByVal axis_stop_int

As Integer) As Integer

Function Library • 153

@ Argument
cardNo: card number 0,1,2,3…
AxisNo: axis number 0,1,2,3,4…
intFlag: int flag, 0 or 1 (0: Disable, 1:Enable)
int_factor: interrupt factor, refer to previous table
*int_type: Interrupt type, (1: error int, 2: event int, 3: both happened)
*event_int: event_int_status, , refer to previous table
*error_int: error_int_status, refer to previous table
*sts: (0: not this card’s IRQ, 1: this card’s IRQ)
*phEvent: event handler (Windows)
*error_int_status: refer to previous table
*event_int_status: refer to previous table
int_disable: (0:make axis stop interrupt active, 1:make axis stop interrupt

in-active)
axis_stop_int: (0: disable axis stop interrupt factor, 1: enable axis stop

interrupt factor)

@ Return Code
ERR_NoError
ERR_EventNotEnableYet
ERR_LinkIntError
ERR_CardNoErrot

6.15 Position Control and Counters

@ Name
_8164_get_position – Get the value of feedback position counter
_8164_set_position – Set the feedback position counter
_8164_get_command – Get the value of command position counter
_8164_set_command – Set the command position counter
_8164_get_error_counter – Get the value of position error counter
_8164_reset_error_counter – Reset the position error counter
_8164_get_general_counter – Get the value of general counter
_8164_set_general_counter – Set the general counter
_8164_get_target_pos – Get the value of target position recorder
_8164_reset_target_pos – Reset target position recorder
_8164_get_rest_command – Get remaining pulse till end of motion
_8164_check_rdp – Get the ramping down point data

@ Description
_8164_get_position():

This function is used to read the feedback position counter value. Note that
this value has already been processed by the move ratio. If the move ratio
is 0.5, than the value read will be twice as the counter value. The source of
the feedback counter is selectable by the function
_8164_set_feedback_src() to be external EA/EB or pulse output of 8164.

154 • Function Library

_8164_set_position():
This function is used to change the feedback position counter to the
specified value. Note that the value to be set will be processed by the move
ratio. If move ratio is 0.5, then the set value will be twice as given value.

_8164_get_command():
This function is used to read the value of the command position counter.
The source of the command position counter is the pulse output of the 8164.

_8164_set_command():
This function is used to change the value of the command position counter.

_8164_get_error_counter():
This function is used to read the value of the position error counter.

_8164_reset_error_counter():
This function is used to clear the position error counter.

_8164_get_general_counter():
This function is used to read the value of the general counter.

_8164_set_general_counter():
This function is used to set the counting source of and change the value of
general counter (By default, the source is pulse input).

_8164_get_target_pos():
This function is used to read the value of the target position recorder. The
target position recorder is maintained by the 8164 software driver. It records
the position to settle down for current running motion.

_8164_reset_target_pos():
This function is used to set new value for the target position recorder. It is
necessary to call this function when home return completes, or when a new
feedback counter value is set by function _8164_set_position().

_8164_get_rest_command():
This function is used to read remaining pulse counts until the end of the
current motion.

_8164_check_rdp():
This function is used to read the ramping down point data. The ramping
down point is the position where deceleration starts. The data is stored as a
pulse count, and it causes the axis start to decelerate when remaining pulse
count reach the data.

Function Library • 155

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _8164_get_position(I16 AxisNo, F64 *pos);
I16 _8164_set_position(I16 AxisNo, F64 pos);
I16 _8164_get_command(I16 AxisNo, I32 *cmd);
I16 _8164_set_command(I16 AxisNo, I32 cmd);
I16 _8164_get_error_counter(I16 AxisNo, I16 *error_counter);
I16 _8164_reset_error_counter(I16 AxisNo);
I16 _8164_get_general_counter(I16 AxisNo, F64 *CntValue);
I16 _8164_set_general_counter(I16 AxisNo,I16 CntSrc, F64 CntValue);
I16 _8164_get_target_pos(I16 AxisNo, F64 *T_pos);
I16 _8164_reset_target_pos(I16 AxisNo, F64 T_pos);
I16 _8164_get_rest_command(I16 AxisNo, I32 *rest_command);
I16 _8164_check_rdp(I16 AxisNo, I32 *rdp_command);

Visual Basic (Windows 95/NT)
B_8164_get_position (ByVal AxisNo As Integer, Pos As Double) As Integer
B_8164_set_position (ByVal AxisNo As Integer, ByVal Pos As Double) As

Integer
B_8164_get_command (ByVal AxisNo As Integer, cmd As Long) As Integer
B_8164_set_command (ByVal AxisNo As Integer, ByVal cmd As Long) As

Integer
B_8164_get_error_counter (ByVal AxisNo As Integer, error_counter As

Integer) As Integer
B_8164_reset_error_counter (ByVal AxisNo As Integer) As Integer
B_8164_get_general_counter (ByVal AxisNo As Integer, CntValue As

Double) As Integer
B_8164_set_general_counter (ByVal AxisNo As Integer, ByVal CntSrc As

Integer, ByVal CntValue As Double) As Integer
B_8164_get_target_pos (ByVal AxisNo As Integer, Pos As Double) As

Integer
B_8164_reset_target_pos (ByVal AxisNo As Integer, ByVal Pos As Double)

As Integer
B_8164_get_rest_command (ByVal AxisNo As Integer, rest_command As

Long) As Integer
B_8164_check_rdp (ByVal AxisNo As Integer, rdp_command As Long) As

Integer

@ Argument
AxisNo: Axis number
Pos, *Pos: Feedback position counter value,

range: -134217728~134217727
cmd, *cmd: Command position counter value,

range: -134217728~134217727
error_counter, *error_counter: Position error counter value,

range: -32768~32767
T_pos, *T_pos: Target position recorder value,

T_ range: -134217728~134217727
CntValue, * CntValue: General counter value,

range: -134217728~134217727
rest_command, *rest_command: Rest pulse count till end,

range: -134217728~134217727

156 • Function Library

rdp_command, *rdp_command: Ramping down point data
range: 0~167777215

CntSrc: Source of general counter
 0 : command
 1: EA/EB
 2: PA/PB (Default)
 3: CLK/2

@ Return Code

ERR_NoError
ERR_PosOutofRange

6.16 Position Compare and Latch

@ Name
_8164_set_ltc_logic – Set the LTC logic
_8164_get_latch_data – Get latched counter data
_8164_set_soft_limit – Set soft limit
_8164_enable_soft_limit – Enable soft limit function
_8164_disable_soft_limit – Disable soft limit function
_8164_set_error_counter_check – Step-losing detection setup
_8164_set_general_comparator – Set general-purposed comparator
_8164_set_trigger_comparator – Set trigger comparator
_8164_set_trigger_type – Set the trigger output type
_8164_check_compare_data – Check current comparator data
_8164_check_compare_status – Check current comparator status
_8164_set_auto_compare – Set comparing data source for auto loading
_8164_build_compare_function – Build compare data via constant interval
_8164_build_compare_table – Build compare data via compare table
_8164_cmp_v_change – Speed change by comparator

@ Description
_8164_set_ltc_logic():

This function is used to set the logic of the latch input. This function is
applicable only for last two axes in every 8164 card.

_8164_get_latch_data():
After the latch signal arrived, this function is used to read the latched value
of counters.

_8164_set_soft_limit():
This function is used to set the soft limit value .

_8164_enable_soft_limit(),_8164_disable_soft_limit():
These two functions are used to enable/disable the soft limit function. Once
enabled, the action of soft limit will be exactly the same as physical limit.

Function Library • 157

_8164_set_error_counter_check():
This function is used to enable the step losing checking facility. By giving a
tolerance value, the 8164 will generate an interrupt (event_int_status , bit 10)
when position error counter exceed tolerance.

_8164_set_general_comparator():
This function is used to set the source and comparing value for the general
comparator. When the source counter value reached the comparing value,
the 8164 will generate an interrupt (event_int_status , bit 11).

_8164_set_trigger_comparator():
This function is used to set the comparing method and value for the trigger
comparator. When the feedback position counter value reaches the
comparing value, the 8164 will generate trigger a pulse output via CMP and
an interrupt (event_int_status , bit 12) will also be sent to host PC. If
_8164_set_auto_compare is used, then the comparing value set by this
function will be ignored automatically. Note: it is applicable only for first two
axes in every 8164 card.

_8164_set_trigger_type():
This function is used to set the trigger output mode

In hardware version A2, it is used for setting the output pulse as a one shot
or constant on.

In hardware version A3, it is used for setting the output pulse as normal
high or normal low.

_8164_check_compare_data():
This function is used to get current comparing data of the designated
comparator.

_8164_check_compare_status():
This function is used to get the status of all comparators. When some
comparators come into existence, the relative bits of cmp_sts will become
‘1,’ otherwise ‘0.’

_8164_set_auto_compare():
This function is used to set the comparing data source of the trigger
comparator. The source can be either a function or a table.

_8164_build_compare_function():
This function is used to build a comparing function by defining the start /
end point and interval. There is no limitation on the max number of
comparing data. It will automatically load a final point after user’s end point.
That is, (end point + Interval x total points) x move ratio.

Note: Please turn off all interrupt functions when triggering is running

158 • Function Library

_8164_build_compare_table():
This function is used to build a comparing table by defining a data array.
The size of array is limited to 1024 when using RAM mode.

Note: Please turn off all interrupt functions when triggering is running
_8164_cmp_v_change():

This function is used to setup the comparator velocity change function. It is
a V_change function but acts when a general comparator comes into
existence. When this function is issued, the parameter “CmpAction” of
_8164_set_general_comparator() must be set ‘3.’ The compare data is
also set by _8164_set_general_comparator(). While the remain distance,
the compare point’s velocity, the new velocity, and the acceleration time are
set by _8164_cmp_v_change().

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _8164_set_ltc_logic(I16 AxisNo_2or3, I16 ltc_logic);
I16 _8164_get_latch_data(I16 AxisNo, I16 LatchNo, F64 *Pos);
I16 _8164_set_soft_limit(I16 AxisNo, I32 PLimit, I32 NLimit);
I16 _8164_disable_soft_limit(I16 AxisNo);
I16 _8164_enable_soft_limit(I16 AxisNo, I16 Action);
I16 _8164_set_error_counter_check(I16 AxisNo, I16 Tolerance, I16

On_Off);
I16 _8164_set_general_comparator(I16 AxisNo, I16 CmpSrc, I16

CmpMethod, I16 CmpAction, F64 Data);
I16 _8164_set_trigger_comparator(I16 AxisNo, I16 CmpSrc, I16

CmpMethod, F64 Data);
I16 _8164_set_trigger_type(I16 AxisNo, I16 TriggerType);
I16 _8164_check_compare_data(I16 AxisNo, I16 CompType, F64 *Pos);
I16 _8164_check_compare_status(I16 AxisNo, U16 *cmp_sts);
I16 _8164_set_auto_compare(I16 AxisNo ,I16 SelectSrc);
I16 _8164_cmp_v_change(I16 AxisNo, F64 Res_dist, F64 oldvel, F64

newvel, F64 AccTime)
C/C++ (Windows 95/98/NT)

I16 _8164_build_compare_function(I16 AxisNo, F64 Start, F64 End, F64
Interval, I16 Device);

I16 _8164_build_compare_table(I16 AxisNo, F64 *TableArray, I16 Size, I16
Device);

C/C++ (Dos)

I16 _8164_build_compare_function(I16 AxisNo, F64 Start, F64 End, F64
Interval);

I16 _8164_build_compare_table(I16 AxisNo, F64 *TableArray, I16 Size);

Visual Basic (Windows 95/NT)
B_8164_set_ltc_logic (ByVal AxisNo As Integer, ByVal ltc_logic As Integer)

As Integer
B_8164_get_latch_data (ByVal AxisNo As Integer, ByVal Counter As

Integer, Pos As Double) As Integer

Function Library • 159

B_8164_set_soft_limit (ByVal AxisNo As Integer, ByVal PLimit As Long,
ByVal NLimit As Long) As Integer

B_8164_disable_soft_limit (ByVal AxisNo As Integer) As Integer
B_8164_enable_soft_limit (ByVal AxisNo As Integer, ByVal Action As

Integer) As Integer
B_8164_set_error_counter_check (ByVal AxisNo As Integer, ByVal

Tolerance As Integer, ByVal On_Off As Integer) As Integer
B_8164_set_general_comparator (ByVal AxisNo As Integer, ByVal CmpSrc

As Integer, ByVal CmpMethod As Integer, ByVal CmpAction As
Integer, ByVal Data As Double) As Integer

B_8164_set_trigger_comparator (ByVal AxisNo As Integer, ByVal CmpSrc
As Integer, ByVal CmpMethod As Integer, ByVal Data As Double)
As Integer

B_8164_set_trigger_type (ByVal AxisNo As Integer, ByVal TriggerType As
Integer) As Integer

B_8164_check_compare_data (ByVal AxisNo As Integer, ByVal
CompType As Integer, Pos As Double) As Integer

B_8164_check_compare_status (ByVal AxisNo As Integer, cmp_sts As
Integer) As Integer

B_8164_set_auto_compare (ByVal AxisNo As Integer, ByVal SelectSrc As
Integer) As Integer

B_8164_build_compare_function (ByVal AxisNo As Integer, ByVal Start As
Double, ByVal End As Double, ByVal Interval As Double, ByVal
Device As Integer) As Integer

B_8164_build_compare_table (ByVal AxisNo As Integer, TableArray As
Double, ByVal Size As Integer, ByVal Device As Integer) As Integer

B_8164_cmp_v_change(ByVal AxisNo, ByVal Res_dist as Double, ByVal
oldvel as Double, ByVal newvel as Double, ByVal AccTime as
Double)

@ Argument
AxisNo_2or3: Axis number, for last two axes in one card
ltc_logic: 0 means active low, 1 means active high
AxisNo: Axis number
LatchNo: Specified Counter to latch

LatchNo = 1 , Command counter
LatchNo = 2 , Feedback counter
LatchNo = 3 , Error Counter
LatchNo = 4 , General Counter

Pos: Latched counter value,
PLimit: Soft limit value, positive direction
NLimit: Soft limit value, negative direction
Action: The reacting method of soft limit

Action =0, INT only
Action =1, Immediately stop
Action =2, slow down then stop
Action =3, reserved

Tolerance: The tolerance of step-losing detection
On_Off: Enable / Disable step-losing detection

On_Off =0, Disable
On_Off =1, Enable

CmpSrc: The comparing source counter

160 • Function Library

CmpSrc =0, Command Counter
CmpSrc =1, Feedback Counter
CmpSrc =2, Error Counter
CmpSrc =3, General Counter

CmpMethod: The comparing method
CmpMethod =0, No compare
CmpMethod =1, CmpValue=Counter (Directionless)
CmpMethod =2, CmpValue=Counter (+Dir)
CmpMethod =3, CmpValue=Counter (-Dir)
CmpMethod =4, CmpValue>Counter
CmpMethod =5, CmpValue<Counter

CmpAction: The reacting mode when comparison comes into exist
CmpAction =0, INT only
CmpAction =1, Immediate stop
CmpAction =2, Slow down then stop
CmpAction =3, Speed change

Data: Comparing value,
TriggerType: Selection of type of trigger output mode
 Hardware Version A2

TriggerType =0, one shoot (default)
TriggerType =1, constant high

Hardware Version A3
TriggerType =0, normal high (default)
TriggerType =1, normal low

CompType: Selection of type of comparator

CompType =1, + Soft Limit
CompType =2, -Soft Limit
CompType =3, Error Counter Comparator Value
CompType =4, General Comparator Value
CompType =5, Trigger Output Comparator Value

cmp_sts: status of comparator
Bit Meaning
0 +Softlimit On
1 -SoftLimit On
2 Error counter comparator On
3 General comparator On
4 Trigger comparator On (for 0 , 1 axis only)

SelectSrc: The comparing data source
SelectSrc =0, disable auto compare
SelectSrc =1, use FIFO

Start: Start point of compare function
End: End point of compare function
Interval: Interval of compare function
TableArray: Array of comparing data
Size: Size of table array
Device: Selection of reload device for comparator data

Device =1, FIFO
Res_dist: The remaining distance from the compare point. After

comparison, the original target position will be ignored, and the axis

Function Library • 161

will keep moving the Res_dist.
oldvel: The velocity at compare point. User must specify it manually.
newvel: The new velocity.
AccTime: The acceleration time.

@ Return Code

ERR_NoError
ERR_CompareNoError
ERR_CompareMethodError
ERR_CompareAxisError
ERR_CompareTableSizeError
ERR_CompareFunctionError
ERR_CompareTableNotReady
ERR_CompareLineNotReady
ERR_HardwareCompareAxisWrong
ERR_AutocompareSourceWrong
ERR_CompareDeviceTypeError

6.17 Continuous motion

@ Name
_8164_set_continuous_move – toggle continuous motion sequence flags
_8164_check_continuous_buffer – check if the command register buffer is empty

@ Description
_8164_set_continuous_move():

This function is necessary before and after continuous motion command
sequences.

_8164_check_continuous_buffer():
This function is used to detect if the command pre-register is empty or not.
Once the command pre-register is empty, users may write the next motion
command into it. Otherwise, the new command will overwrite the previous
command in the 2nd command pre-register.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_set_continuous_move(I16 AxisNo, I16 conti_flag);
I16 _8164_check_continuous_buffer(I16 AxisNo);

Visual Basic (Windows 95/NT)
B_8164_set_continuous_move (ByVal AxisNo As Integer, ByVal conti_flag

As Integer) As Integer
B_8164_check_continuous_buffer (ByVal AxisNo As Integer) As Integer

162 • Function Library

@ Argument
AxisNo: axis number designated
conti_flag: Flag for continuous motion

conti_flag = 0, declare continuous motion sequence is finished
conti_flag = 1, declare continuous motion sequence is started

@ Return Value

ERR_NoError

Return value of _8164_check_continuous_buffer():
Hardware version bit 12=0

0: command register 2 is empty
1: command register 2 is in-use

Return value of _8164_check_continuous_buffer():
Hardware version bit 12=1

0: all command registers are empty
1: command register is in-use
2: command register 1 is in-use
3: command register 2 is in-use

6.18 Multiple Axes Simultaneous Operation

@ Name
_8164_set_tr_move_all – Multi-axis simultaneous operation setup.
_8164_set_ta_move_all – Multi-axis simultaneous operation setup.
_8164_set_sr_move_all – Multi-axis simultaneous operation setup.
_8164_set_sa_move_all – Multi-axis simultaneous operation setup.
_8164_start_move_all – Begin a multi-axis trapezoidal profile motion
_8164_stop_move_all –Simultaneously stop Multi-axis motion
_8164_set_sync_option – Other sync. motion setting
_8164_set_sync_stop_mode – Setting the stop mode of CSTOP signal

@ Description

Theses functions are related to simultaneous operations of multi-axes, even
in different cards. The simultaneous multi-axis operation means to start or
stop moving specified axes at the same time. The axes moved are specified
by the parameter “AxisArray,” and the number of axes are defined by
parameter “TotalAxes” in _8164_set_tr_move_all().

When properly setup with _8164_set_xx_move_all(), the function
_8164_start_move_all() will cause all specified axes to begin a trapezoidal
relative movement, and _8164_stop_move_all() will stop them. Both
functions guarantee that motion Start/Stop on all specified axes are at the
same time. Note that it is necessary to make connections according to
Section 3.14 on CN4 if these two functions are needed.

Function Library • 163

The following code demos how to utilize these functions. This code moves
axis 0 and axis 4 to distance 8000.0 and 120000.0 respectively. If we
choose velocities and accelerations that are proportional to the ratio of
distances, then the axes will arrive at their endpoints at the same time.

int main()
{
 I16 axes[2] = {0, 4};
 F64 dist[2] = {8000.0, 12000.0},
 str_vel[2]={0.0, 0.0},
 max_vel[2]={4000.0, 6000.0},
 Tacc[2]={0.04, 0.06},
 Tdec[2]= {0.04, 0.06};

_8164_set_tr_move_all(2, axes, dist, str_vel, max_vel, Tacc, Tdec);
_8164_start_move_all(axes[0]);

returnERR_NoError;

}

_8164_set_sync_option()

It lets two or more different command groups start at the same time.
For example, if you want a 2-axis linear interpolation and a 1-axis
single motion to start at the same time, you can turn on this option
before the command starts. Besides, this function can also be used
when waiting for another command’s finish signal before starting. For
example, axis1 must start after axis2 is done.

_8164_set_sync_stop_mode()

It provides two options for stop types: One is immediately stop and
the other is slow down to stop. When the _8164_stop_move_all() or
CSTOP signal is used, the axes will stop according to this setting.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_set_tr_move_all(I16 TotalAxes, I16 *AxisArray, F64 *DistA, F64

*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA);
I16 _8164_set_sa_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA, F64

*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA, F64 *SVaccA,
F64 *SVdecA);

I16 _8164_set_ta_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA, F64
*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8164_set_sr_move_all(I16 TotalAx, I16 *AxisArray, F64 *DistA, F64
*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA, F64 *SVaccA,
F64 *SVdecA);

I16 _8164_start_move_all(I16 FirstAxisNo);
I16 _8164_stop_move_all(I16 FirstAxisNo);
I16 _8164_set_sync_option(I16 AxisNo, I16 sync_stop_on, I16

cstop_output_on, I16 sync_option1, I16 sync_option2);
I16 _8164_set_sync_stop_mode(I16 AxisNo, I16 stop_mode);

164 • Function Library

Visual Basic (Windows 95/NT)
B_8164_set_tr_move_all(ByVal TotalAxes As Integer, AxisArray As Integer,

DistA As Double, StrVelA As double, MaxVelA As double, TaccA As
double, TdecA As double);

B_8164_set_sa_move_all(ByVal TotalAxes As Integer, AxisArray As
Integer, PosA As Double, StrVelA As double, MaxVelA As double,
TaccA As double, TdecA As double, SVaccA As double, SVdecA
As Double);

B_8164_set_ta_move_all(ByVal TotalAxes As Integer, AxisArray As Integer,
PosA As Double, StrVelA As double, MaxVelA As double, TaccA As
double, TdecA As double);

B_8164_set_sr_move_all(ByVal TotalAxes As Integer, AxisArray As Integer,
DistA As Double, StrVelA As double, MaxVelA As double, TaccA As
double, TdecA As double, SVaccA As double, SVdecA As Double);

B_8164_start_move_all(ByVal FirstAxisNo As Integer);
B_8164_stop_move_all(ByVal FirstAxisNo As Integer);
B_8164_set_sync_option (ByVal AxisNo As Integer, ByVal sync_stop_on

As Integer, ByVal cstop_output_on As Integer, ByVal sync_option1
As Integer, ByVal sync_option2 As Integer) As Integer

B_8164_set_sync_stop_mode (ByVal AxisNo As Integer, ByVal stop_mode
As Integer) As Integer

@ Argument
TotalAxes: Number of axes for simultaneous motion, 1~48.
* AxisArray: Specified axes number array designated to move.
* DistA: Specified position array in units of pulse
* StrVelA: Starting velocity array in units of pulse per second
* MaxVelA : Maximum velocity array in units of pulse per second
* TaccA: Acceleration time array in units of seconds
* TdecA: Deceleration time array in units of seconds
* SVaccA: Specified velocity interval array in which S-curve acceleration is

performed.
* SVdecA: specified velocity interval array in which S-curve deceleration is

performed.
FirstAxisNo: the first element in AxisArray.
Sync_stop_on: Axis will stop if the CSTOP signal is on
Cstop_output_on: CSTOP signal will output with an abnormal stop

(ALM,EL..etc)
Sync_option1: Choose command start type:
 0: default (immediate start)
 1: waiting _8164_start_move_all() or CSTA signal
 2: Reserved
 3: Check Sync_option2’s condition to start
Sync_option2: For example:
 0: default (useless)
 1: after Axis0 stops
 2: after Axis1 stops
 4: after Axis2 stops
 8: after Axis3 stops
 5: after Axis0 and Axis2 stop
 15: Axis0~Axis3 stop

Function Library • 165

stop_mode: 0: immediate stop
 1: slow down to stop

@ Return Code
ERR_NoError
ERR_SpeedError

6.19 General-purposed TTL output (PCI-8164 Only)

@ Name
_8164_d_output – Digital Output
_8164_get_dio_status – Get DIO status

@ Description
_8164_d_output():

Set the on_off status for general-purposed TTL Digital output pin.
_8164_get_dio_status():

Read status of all digital output pin.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_d_output(I16 CardNo, I16 Ch_No, I16 value);
I16 _8164_get_dio_status(I16 CardNo, U16 *dio_sts);

Visual Basic (Windows 95/NT)
B_8164_d_output (ByVal CardNo As Integer, ByVal Ch_No As Integer,

ByVal value As Integer) As Integer
B_8164_get_dio_status (ByVal CardNo As Integer, dio_sts As Integer) As

Integer

@ Argument
CardNo: Designated card number
Ch_No: Designated channel number 0~5
Value: On-Off Value for output

Value =0, output OFF
Value =1, output ON

dio_status: Digital output status
bit0~bit5 for channel 0~5 , respectively

@ Return Value
ERR_NoError
ERR_DioNoError

166 • Function Library

6.20 General-purposed DIO (MPC-8164 Only)

@ Name
_8164_write_do – Digital Output
_8164_read_di – Digital Input

@ Description
_8164_write_do():

Output an 8-bit value once to control 8 output channels.
_8164_read_di():

Read back an 8-bit value once from 8 input channels.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _8164_write_do(I16 CardNo, U16 Value);
U16 _8164_read_di(I16 CardNo);

Visual Basic (Windows 95/NT)
B_8164_write_do (ByVal CardNo As Integer, ByVal value As Integer) As

Integer
B_8164_read_di (ByVal CardNo As Integer) As Integer

@ Argument
CardNo: Designated card number
Value: Value for output

Bit =0, output OFF
Bit =1, output ON

@ Return Value
ERR_NoError
Digital Input Value for 8 channels

Connection Example • 167

7

Connection Example

This chapter shows some connection examples between the 8164 and
servo drivers and stepping drivers.

7.1 General Description of Wiring

CN1: Receives +24V power from the external power supply. (PCI-8164
Only)

CN2: Main connection between the PCI-8164 and the pulse input servo
driver or stepping driver.

CN3: Receives pulse commands from manual pulse in PCI-8164.

 General Purpose DIO for MPC-8164

CN4: Connector for simultaneously start or stop of multiple PCI-8164 cards.

CN5: TTL digital output for PCI-8164

Figure 8 illustrates how to integrate the PCI-8164 with a physical system.

168 • Connection Example

Figure 8: System Integration with PCI-8164

7.2 Connection Example with Servo Driver

This example will illustrate the connection between a Panasonic Servo
Driver and the 8164. Figure 9 shows the wiring diagram.

Note that:

1. For convenience, the drawing shows connections for one axis only.

2. Default pulse output mode is OUT/DIR. Default input mode is 1X AB
phase. Other modes can be set using the available software functions.

3. Most general purpose servomotor drivers can operate in Torque Mode,
Velocity Mode, or Position Mode. To connect with the 8164, users
should set the operating mode to Position Mode.

Connection Example • 169

Figure 9: Connection of PCI-8164 with Panasonic Driver

Wiring of PCI-8164 with Panasonic MSD

3
4
5
6

98
99
7
8
9

10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

PCI_8164 Axis 1 Servo Driver

Panasonic
MSC CNI/F
(50-200 W)

Table

MEL ORG MSD PSD PEL

E

M

6
5
8
7

PULS +
PULS -
SIGN +
SIGN -

28
11
12

COM -
COM +

SRV-ON

26
25

ALM
COIN

27SRDY
3
19

GND
OA +

20OA -
21
22

OB +
OB -

1OZ +
2OZ -

13CL

170 • Connection Example

Figure 10: Connection of PCI-8164 with SANYO Driver

Wiring of PCI-8164 with SANYO AC Servo PY2

3
4
5
6
98
99

7
8
9
10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V

SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

PCI_8164 Axis 1 Servo Driver

SANYO
BL Super P

Series

Table

MEL ORG MSD PSD PEL

E

M

26
27
28
29

PPC
PPC
NPC
NPC

25
23

37

DC24V COM
DC24V

Servo ON

43
39

ALM1
General Out

32PROT

3Encoder A
4Encoder A
5
6

Encoder B
Encoder B

7Encoder C
8Encoder C

33NROT

CN1

EX +24V100 49DC24V

Connection Example • 171

7.3 Wiring with DIN-814M

Note:

1. The DIN-814M provides 2 connection methods for every axis. The first
is through the CNA & CNB connectors. This is for Mitsubishi J2S series
servo driver. The second is through SJ connector. This is for stepping
driver or other servo drivers (for Panasonic MINAS MSD driver, please
use DIN-814P). Keep in mind that the signals in SJ and CNA & CNB of
the same axis are directly shorted. DO NOT use both connectors at the
same time.

2. Two one-to-one 20-PIN cables are required for connection between the
CNA & CNB and the Mitsubishi J2S driver. It is available from ADLINK,
or users may contact the local dealer or distributor to get cable
information.

Warning
The DIN-814M is used for wiring between Mitsubishi J2S series
servo drivers and ADLINK PCI-8134, PCI-8164, or MPC-8164
motion controller card ONLY. Never try it on any other servo driver
and other cards.

CNA-(1)

C
N

A
-(3)

C
N

2

C
N

A
-(2)

CN1

S
J-

(3
)

S
J-

(4
)

S
J-

(1
)

S
J-

(2
)

L
E

D
4

L
E

D
3

L
E

D
2

L
E

D
1

IOIF-(4)

IOIF-(2)

IOIF-(3)

IOIF-(1)

CNB-(1) CNB-(2)

CNA-(4) CNB-(4) CNB-(3)

J1~J4 HD-(1) HD-(2)

HD-(4) HD-(3)

To
PCI-8134/8164

GND
+24V

1st Axis
To Mitsubishi

J2S Driver

2nd Axis
To Mitsubishi J2S

Driver

A B

A

A

A

B

B B

4th Axis
To Mitsubishi

J2S Driver

3rd Axis
To Mitsubishi

J2S Driver

To stepping
driver

Mechanical I/O
Interface

LED indecater

-(1) : for 1st axis
-(2) : for 2nd axis
-(3) : for 3rd axis
-(4) : for 4th axis

1
1

172 • Connection Example

3. Depending on which PCI-8134 or PCI-8164/MPC-8164 card used,
some signals (PSD and MSD) in the IOIF connector will function
differently. When PCI-8134 is used, The PSD and MSD are for positive
slow down and negative slow down signal respectively. While PCI-8164
is used, PSD is for CMP and LTC and MSD is for SD. For more detail s,
please refer to the PCI-8134 and PCI-8164 user manuals.

4. Ext EMG and EMG: Due to the existence of EMG (Emergence stop
signal) in the Mitsubishi J2S driver, users may select either of the
following two operations by setting jumpers (J1-J4, J1 for 1st axis, J2 for
2nd axis, etc.).

• 1-2 shorted: The EMG is shorted to GND, so Ext. EMG of IOIF pin 2 is
not used.

• 2-3 shorted: The Ext. EMG of IOIF pin 2 is connected to EMG at the
driver; so, to externally stop the motor set Ext. EMG open to GND.

Mechanical Dimensions:

Connection Example • 173

PIN Assignment:
CNA1~CNA4

No. Name I/O Function No. Name I/O Function
1 IGND -- Isolated Ground 2 DIR+ O Direction Signal (+)
3 OUT+ O Pulse Signal (+) 4
5 EZ+ I Encoder Z-phase (+) 6 EA+ I Encoder A-phase (+)
7 EB+ I Encoder B-phase (+) 8 ERC O Error counter Clear
9 +24V O Voltage output 10 IGND -- Isolated Ground
11 12 DIR- O Direction Signal (-)
13 OUT- O Pulse Signal (-) 14
15 EZ- I Encoder Z-phase (-) 16 EA- I Encoder A-phase (-)
17 EB- I Encoder B-phase (-) 18 INP I Servo In Position
19 RDY I Servo Ready 20 IGND -- Isolated Ground

CNB1~CNB4
No. Name I/O Function No. Name I/O Function
1 IGND -- Isolated Ground 2
3 4
5 Servo ON O Servo On 6
7 8
9 10 IGND -- Isolated Ground
11 12
13 +24V O Voltage output 14
15 EMG I Internal EMG Signal 16 IGND -- Isolated Ground
17 IGND -- Isolated Ground 18 ALM I Servo Alarm
19 20 IGND -- Isolated Ground

IOIF1~IOIF4
No. Name I/O Function No. Name I/O Function
1 +24V O Voltage output 6 MSD I Negative Slow Switch (+)
2 EX_EMG I External EMG Signal 7 ORG I
3 PEL I Positive Limit (+) 8 IGND --
4 MEL I Negative Limit (-) 9 IGND --
5 PSD I Positive Slow Switch (+)

SJ1~SJ4
No. Name I/O Function No. Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 Servo ON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

CN1
No. Name I/O Function
1 EX+24V I External Power Supply Input (+24V DC ± 5%)
2 EXGND -- External Power Supply Ground.

HD1~HD4
No. Name I/O Function No. Name I/O Function
1 +24V O Voltage output 4 EX_EMG I External EMG Signal
2 Servo ON O Servo On 5 ALM I Servo Alarm
3 RDY I Servo Ready 6 IGND -- Isolated Ground

Jumper
J1~J4 1: GND 2: EMG4 3: EX_EMG

174 • Connection Example

How to wire
PEL, MEL, ORG, SD, PSD, MSD, Ext.EMG (in IOIF):

CMP, LTC (in IOIF)
CMP is a TTL 5V or 0V output (vs. Ext GND)
LTC is a TTL 5V or 0V input (vs. Ext. GND)

CNA & CNB, CN2

SJ: Please refer to PCI-8134 / PCI-8164 user manual for wiring.

CN1:

Connection Example • 175

Warning
The DIN-814M is used for wiring between the Panasonic MINAS
MSD series servo driver and ADLINK PCI-8134, PCI-8164 motion
controller cards ONLY. Never try it on any other servo drivers or
cards.

7.4 Wiring with DIN-814P

Note:

1. The DIN-814P provides 2 connection methods for every axis. The first
is through the CNIF connector for the Panasonic MINAS MSD series
servo driver. The second is through SJ connector for stepping drivers
or other servo drivers (for the Mitsubishi J2S driver, please use DIN-
814M). Keep in mind that the signals in SJ and CNIF of the same axis
are directly shorted. DO NOT use both connectors at the same time.

2. A one-to-one 36-PIN cable is required to connect between the CNIF
and the Panasonic MINAS MSD driver. It is available from ADLINK, or
users may contact a local dealer or distributor to get cable information.

CNIF-(4)

CNIF-(1)

C
N

IF
-(3)

C
N

2
C

N
IF

-(2)

CN1

S
J-

(3
)

S
J-

(4
)

S
J-

(1
)

S
J-

(2
)

L
E

D
4

L
E

D
3

L
E

D
2

L
E

D
1

IOIF-(4)

IOIF-(2)

IOIF-(3)

IOIF-(1)

To
PCI-8134/8164

GND
+24V

4th Axis
To Panasonic
Driver - CN1

2nd Axis
To Panasonic
Driver - CN1

1st Axis
To Panasonic
Driver - CN1

LED indecaterTo stepping
driver

Mechanical I/O
Interface

-(1) : for 1st axis
-(2) : for 2nd axis
-(3) : for 3rd axis
-(4) : for 4th axis

3rd Axis
To Panasonic
Driver - CN1

1
1

1

1

1

1

176 • Connection Example

3. Depending on the PCI-8134 or PCI-8164 card used, some signals
(PSD & MSD) in the IOIF connector will function differently. When PCI-
8134 is used, the PSD and MSD signals are for positive slow down and
negative slow down signal respectively. When PCI-8164 is used, PSD
is for CMP and LTC, and MSD is for SD. For more details, please refer
to the PCI-8134 and PCI-8164 user manuals.

Mechanical Dimensions:

Connection Example • 177

PIN Assignment:

CNIF1~CNIF4
No. Name I/O Function No. Name I/O Function
1 EZ+ I Encoder Z-phase (+) 2 EZ- I Encoder Z-phase (-)
3 IGND -- Isolated Ground 4
5 OUT+ O Pulse Signal (+) 6 OUT- O Pulse Signal (-)
7 DIR+ O Direction Signal (+) 8 DIR- O Direction Signal (-)
9 IGND -- Isolated Ground 10
11 +24V O Voltage output 12 Servo ON O Servo On
13 ERC O Error counter Clear 14
15 IGND -- Isolated Ground 16
17 18
19 EA+ I Encoder A-phase (+) 20 EA- I Encoder A-phase (-)
21 EB+ I Encoder B-phase (+) 22 EB- I Encoder B-phase (-)
23 24
25 INP I Servo In Position 26 ALM I Servo Alarm
27 RDY I Servo Ready 28 IGND -- Isolated Ground
29 30
31 32
33 34
35 36

IOIF1~IOIF4
No. Name I/O Function No

. Name I/O Function

1 +24V O Voltage output 6 MSD I Negative Slow Switch (+)
2 +24V O Voltage output 7 ORG I
3 PEL I Positive Limit (+) 8 IGND --
4 MEL I Negative Limit (-) 9 IGND --
5 PSD I Positive Slow Switch (+)

SJ1~SJ4
No. Name I/O Function No Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 Servo ON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

CN1
No. Name I/O Function
1 EX+24V I External Power Supply Input (+24V DC ± 5%)
2 EXGND -- External Power Supply Ground

178 • Connection Example

How to wire
PEL, MEL, ORG, SD, PSD, MSD (in IOIF):

CMP, LTC (in IOIF)

CMP is a TTL 5V or 0V output (vs. Ext GND)
LTC is a TTL 5V or 0V input (vs. Ext. GND)

CNA & CNB, CN2

SJ: Please refer to PCI-8134 / PCI-8164 user manual for wiring.
CN1:

Appendix A • 179

Appendix A Color code of CN3 Cable
(MPC-8164 Only)

CN3
Pin No

Signal
Name Color CN3

Pin No
Signal
Name Color

1 DOCOM Brown 2 DOCOM Pink-Black
3 DOCOM Grey 4 DOCOM Blue-White
5 DO0 Red 6 DO1 Grey-Black
7 DO2 White 8 DO3 Purple-White
9 DO4 Orange 10 DO5 Light Green-Black
11 DO6 Pink 12 DO7 White-Blue
13 -- Yellow 14 DICOM Light Blue-Black
15 DICOM Light Blue 16 DICOM Red-White
17 DICOM Green 18 DI0 Green-Black
19 DI1 Light Green 20 DI2 Brown-White
21 DI3 Blue 22 DI4 Yellow-Black
23 DI5 Red Black 24 DI6 White-Black
25 DI7 Purple 26 -- Black-Orange

180 • Warranty Policy

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and enjoy all
the after-sales services we offer, please read the following carefully.

1. Before using ADLINK’s products please read the user manual and
follow the instructions exactly. When sending in damaged products for
repair, please attach an RMA application form.

2. All ADLINK products come with a two-year guarantee, repaired free of
charge.

• The warranty period starts from the product’s shipment date from
ADLINK’s factory

• Peripherals and third-party products not manufactured by ADLINK
will be covered by the original manufacturers’ warranty

• End users requiring maintenance services should contact their
local dealers. Local warranty conditions will depend on the local
dealers.

3. Our repair service does not cover the two-year warranty, if the following
items cause damage:

a. Damage caused by not following instructions on user menus.

b. Damage caused by carelessness on the users’ part during product
transportation.

c. Damage caused by fire, earthquakes, floods, lightening, pollution,
and/or incorrect usage of voltage transformers.

d. Damage caused by unsuitable storage environments (i.e. high
temperatures, high humidity or volatile chemicals.

e. Damage caused by leakage of battery fluid when changing
batteries.

f. Damage from improper repair by unauthorized technicians.

g. Products with altered and/or damaged serial numbers are not
entitled to our service.

h. Other categories not protected under our guarantees.

4. Customers are responsible for shipping costs to transport damaged
products to our company or sales office.

 Warranty Policy • 181

5. To ensure the speed and quality of product repair, please download a
RMA application form from our company website www.adlinktech.com.
Damaged products with RMA forms attached receive priority.

For further questions, please contact our FAE staff.

ADLINK: service@adlinktech.com

Test & Measurement Product Segment: NuDAQ@adlinktech.com

Automation Product Segment: Automation@adlinktech.com

Computer & Communication Product Segment: NuPRO@adlinktech.com;
NuIPC@adlinktech.com

